# Double Hawking Temperature: From Black Hole to de Sitter

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. $2{\mathit{T}}_{\mathit{H}}$ Problem for Black Holes

## 3. $\mathbf{2}{\mathit{T}}_{\mathit{H}}$ Problem for White Holes

## 4. $\mathbf{2}{\mathit{T}}_{\mathit{H}}$ Problem in the de Sitter Spacetime

## 5. Two Processes of the Black Hole Radiation

## 6. Acceleration: Unruh Effect vs. Local Processes

## 7. Relation between Global and Local Processes in de Sitter Spacetime

## 8. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hooft, G.T. Ambiguity of the equivalence principle and Hawking’s temperature. J. Geom. Phys.
**1984**, 1, 45–52. [Google Scholar] [CrossRef] - Hooft, G.T. How studying black hole theory may help us to quantise gravity. arXiv
**2022**, arXiv:2211.10723. [Google Scholar] - Volovik, G.E. Simulation of Painleve-Gullstrand black hole in thin
^{3}He-A film. JETP Lett./Pis’ma ZhETF**1999**, 69, 662–668, 705–713. [Google Scholar] - Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett.
**2000**, 85, 5042. [Google Scholar] [CrossRef] [PubMed][Green Version] - Volovik, G.E. Particle decay in de Sitter spacetime via quantum tunneling. JETP Lett./Pis’ma ZhETF
**2009**, 90, 1–4, 3–6. [Google Scholar] [CrossRef][Green Version] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199–220. [Google Scholar] [CrossRef] - Painlevé, P. La mécanique classique et la théorie de la relativité. Comptes Rendus Acad. Sci.
**1921**, 173, 677. [Google Scholar] - Gullstrand, A. Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie. Arkiv. Mat. Astron. Fys.
**1922**, 16, 1–15. [Google Scholar] - Volovik, G.E. Painlevé-Gullstrand coordinates for Schwarzschild-de Sitter spacetime. arXiv
**2022**, arXiv:2209.02698. [Google Scholar] - Barbado, L.C.; Barcelo, C.; Garay, L.J. Hawking radiation as perceived by different observers. Class. Quantum Grav.
**2011**, 28, 125021. [Google Scholar] [CrossRef] - Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Hawking temperature in the tunneling picture. Phys. Lett. B
**2006**, 642, 124–128. [Google Scholar] [CrossRef][Green Version] - Mitra, P. Hawking temperature from tunnelling formalism. Phys. Lett. B
**2007**, 648, 240–242. [Google Scholar] [CrossRef][Green Version] - Laxmi, Y.O.; Singh, T.I.; Meitei, I.A. Modified entropy of Kerr-de Sitter black hole in Lorentz symmetry violation theory. arXiv
**2022**, arXiv:2112.14545. [Google Scholar] [CrossRef] - Singha, C.; Nanda, P.; Tripathy, P. Hawking radiation in multi-horizon spacetimes. arXiv
**2022**, arXiv:2206.06433. [Google Scholar] - Srinivasan, K.; Padmanabhan, T. Particle production and complex path analysis. Phys. Rev. D
**1999**, 60, 024007. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E. Varying Newton constant and black hole to white hole quantum tunneling. Universe
**2020**, 6, 133. [Google Scholar] [CrossRef] - Volovik, G.E. Effect of the inner horizon on the black hole thermodynamics: Reissner-Nordström black hole and Kerr black hole. Mod. Phys. Lett. A
**2021**, 36, 2150177. [Google Scholar] [CrossRef] - Volovik, G.E. Macroscopic quantum tunneling: From quantum vortices to black holes and Universe. ZhETF
**2022**, 162, 449–454, JETP**2022**, 135, 388–408. [Google Scholar] - Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Volume 5, Statistical Physics; Pergamon: Oxford, UK, 1980. [Google Scholar]
- Maxfield, H.; Zahraee, Z. Holographic solar systems and hydrogen atoms: Non-relativistic physics in AdS and its CFT dual. JHEP
**2022**, 11, 093. [Google Scholar] [CrossRef] - Bros, J.; Epstein, H.; Moschella, U. Lifetime of a massive particle in a de Sitter universe. J. Cosmol. Astropart. Phys.
**2008**, 2008, 3. [Google Scholar] [CrossRef] - Bros, J.; Epstein, H.; Gaudin, M.; Moschella, U.; Pasquier, V. Triangular invariants, three-point functions and particle stability on the de Sitter universe. Commun. Math. Phys.
**2010**, 295, 261–288. [Google Scholar] [CrossRef][Green Version] - Jatkar, D.P.; Leblond, L.; Rajaraman, A. Decay of massive fields in de Sitter space. Phys. Rev. D
**2012**, 85, 024047. [Google Scholar] [CrossRef][Green Version] - Jannes, G. Hawking radiation of E < m massive particles in the tunneling formalism. JETP Lett.
**2011**, 94, 18–21. [Google Scholar] - Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D
**1976**, 14, 870. [Google Scholar] [CrossRef][Green Version] - Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Volume 3, Quantum Mechanics: Non-Relativistic Theory; Published June 1st 1981 by Pergamon, Oxford; Pergamon: Oxford, UK, 1981. [Google Scholar]
- Volovik, G.E. Particle creation: Schwinger + Unruh + Hawking. Pis’ma v ZhETF/JETP Lett.
**2022**, 116, 577–595. [Google Scholar] [CrossRef] - Starobinsky, A. Stochastic de Sitter (inflationary) stages in the Early Universe. In Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1986; Volume 246, pp. 107–126. [Google Scholar]
- Starobinsky, A.A.; Yokoyama, J. Equilibrium state of a self-interacting scalar field in the de Sitter background. Phys. Rev. D
**1994**, 50, 6357. [Google Scholar] [CrossRef][Green Version] - Feigel’man, M.V.; Ioselevich, A.S. Variable-range cotunneling and conductivity of a granular metal. JETP Lett.
**2005**, 81, 277–283. [Google Scholar] [CrossRef][Green Version] - Glazman, L.I.; Pustilnik, M. Low-temperature transport through a quantum dot, Lectures notes of the Les Houches Summer School 2004. In Nanophysics: Coherence and Transport; Bouchiat, H., Gefen, Y., Guéron, S., Montambaux, G., Dalibard, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 427–478. [Google Scholar]
- Polyakov, A.M. De Sitter space and eternity. Nucl. Phys. B
**2008**, 797, 199–217. [Google Scholar] - Polyakov, A.M. Infrared instability of the de Sitter space. arXiv
**2012**, arXiv:1209.4135. [Google Scholar] - Akhmedov, E.T. Lecture notes on interacting quantum fields in de Sitter space. Int. J. Mod. Phys.
**2014**, 23, 1430001. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Volovik, G.E. Double Hawking Temperature: From Black Hole to de Sitter. *Universe* **2022**, *8*, 639.
https://doi.org/10.3390/universe8120639

**AMA Style**

Volovik GE. Double Hawking Temperature: From Black Hole to de Sitter. *Universe*. 2022; 8(12):639.
https://doi.org/10.3390/universe8120639

**Chicago/Turabian Style**

Volovik, Grigory E. 2022. "Double Hawking Temperature: From Black Hole to de Sitter" *Universe* 8, no. 12: 639.
https://doi.org/10.3390/universe8120639