Antibacterial Activity of Metal Complexes of Cu(II) and Ni(II) with the Ligand 2-(Phenylsubstituted) Benzimidazole
Abstract
:1. Introduction
2. Metal Complexes of Ni(II) and Cu(II) with Monodentate 2-(Phenylsubstituted) Benzimidazole Derivatives
3. Metal Complexes of Ni(II) and Cu(II) with 2-(Hydroxyphenyl)benzimidazole Ligands
4. Ni(II) and Cu(II) Metal Complexes with Schiff Bases Obtained from 2-(Aminophenyl)benzimidazole
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Tacconelli, E.; Pezzani, M.D. Public Health Burden of Antimicrobial Resistance in Europe. Lancet Infect. Dis. 2019, 19, 4–6. [Google Scholar] [CrossRef] [PubMed]
- López-Pueyo, M.J.; Barcenilla-Gaite, F.; Amaya-Villar, R.; Garnacho-Montero, J. Multirresistencia Antibiotica En Unidades de Criticos. Med. Intensiv. 2011, 35, 41–53. [Google Scholar] [CrossRef]
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, Y.; Zhao, Y.; Zhao, Y.; Wang, H.; Wang, H.; Zhang, F.; Zhang, F.; Li, R.; Li, R.; et al. Ambient Reductive Synthesis of N-Heterocyclic Compounds over Cellulose-Derived Carbon Supported Pt Nanocatalyst under H2atmosphere. Green Chem. 2020, 22, 3820–3826. [Google Scholar] [CrossRef]
- Kaur, N. Synthesis of Five-Membered N,N,N-and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. [Google Scholar] [CrossRef]
- Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M.; Karcı, H.; Özdemir, İ.; Koç, A.; et al. New Silver N–Heterocyclic Carbenes Complexes: Synthesis, Molecular Docking Study and Biological Activities Evaluation as Cholinesterase Inhibitors and Antimicrobials. J. Mol. Struct. 2021, 1238, 130399. [Google Scholar] [CrossRef]
- Shakurova, E.R.; Parfenova, L.V. Synthesis of N-Heterocyclic Analogues of 28-O-Methyl Betulinate, and Their Antibacterial and Antifungal Properties. Molbank 2020, 2020, M1100. [Google Scholar] [CrossRef]
- Furdui, B.; Parfene, G.; Ghinea, I.O.; Dinica, R.M.; Bahrim, G.; Demeunynck, M. Synthesis and in Vitro Antimicrobial Evaluation of New N-Heterocyclic Diquaternary Pyridinium Compounds. Molecules 2014, 19, 11572–11585. [Google Scholar] [CrossRef]
- Stachowicz, J.; Krajewska-Kulak, E.; Lukaszuk, C.; Niewiadomy, A. Relationship between Antifungal Activity against Candida Albicans and Electron Parameters of Selected N-Heterocyclic Thioamides. Indian J. Pharm. Sci. 2014, 76, 287–298. [Google Scholar]
- Zou, T.; Lok, C.N.; Wan, P.K.; Zhang, Z.F.; Fung, S.K.; Che, C.M. Anticancer Metal-N-Heterocyclic Carbene Complexes of Gold, Platinum and Palladium. Curr. Opin. Chem. Biol. 2018, 43, 30–36. [Google Scholar] [CrossRef]
- Yaqoob, M.; Gul, S.; Zubair, N.F.; Iqbal, J.; Iqbal, M.A. Theoretical Calculation of Selenium N-Heterocyclic Carbene Compounds through DFT Studies: Synthesis, Characterization and Biological Potential. J. Mol. Struct. 2020, 1204, 127462. [Google Scholar] [CrossRef]
- Soto-Sánchez, J.; Ospina-Villa, J.D. Current Status of Quinoxaline and Quinoxaline 1,4-Di-N-Oxides Derivatives as Potential Antiparasitic Agents. Chem. Biol. Drug Des. 2021, 98, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive Review in Current Developments of Benzimidazole-Based Medicinal Chemistry. Chem. Biol. Drug Des. 2015, 86, 799–845. [Google Scholar] [CrossRef] [PubMed]
- Woolley, D.W. Some Biological Effects Produced By Benzimidazole and Their Reversal By Purines. J. Biol. Chem. 1944, 152, 225–232. [Google Scholar] [CrossRef]
- Vasantha, K.; Basavarajaswamy, G.; Vaishali Rai, M.; Boja, P.; Pai, V.R.; Shruthi, N.; Bhat, M. Rapid ‘One-Pot’ Synthesis of a Novel Benzimidazole-5-Carboxylate and Its Hydrazone Derivatives as Potential Anti-Inflammatory and Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2015, 25, 1420–1426. [Google Scholar] [CrossRef]
- Gaba, M.; Gaba, P.; Uppal, D.; Dhingra, N.; Bahia, M.S.; Silakari, O.; Mohan, C. Benzimidazole Derivatives: Search for GI-Friendly Anti-Inflammatory Analgesic Agents. Acta Pharm. Sin. B 2015, 5, 337–342. [Google Scholar] [CrossRef]
- Acar Çevik, U.; Kaya Çavuşoğlu, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis, Docking Studies and Biological Activity of New Benzimidazole-Triazolothiadiazine Derivatives as Aromatase Inhibitor. Molecules 2020, 25, 1642. [Google Scholar] [CrossRef]
- Thamban Chandrika, N.; Shrestha, S.K.; Ranjan, N.; Sharma, A.; Arya, D.P.; Garneau-Tsodikova, S. New Application of Neomycin B–Bisbenzimidazole Hybrids as Antifungal Agents. ACS Infect. Dis. 2018, 4, 196–207. [Google Scholar] [CrossRef]
- Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Kandil, E.A.; Qassem, O.M.; Elgammal, Y.; Nasr, M.; McPhillie, M.J.; Abouzid, K.A.M.; Seleem, M.N.; et al. SAR Investigation and Optimization of Benzimidazole-Based Derivatives as Antimicrobial Agents against Gram-Negative Bacteria. Eur. J. Med. Chem. 2023, 247, 115040. [Google Scholar] [CrossRef]
- Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An Emerging Scaffold for Analgesic and Anti-Inflammatory Agents. Eur. J. Med. Chem. 2014, 76, 494–505. [Google Scholar] [CrossRef]
- Prieto-Martínez, F.D.; Peña-Castillo, A.; Méndez-Lucio, O.; Fernández-de Gortari, E.; Medina-Franco, J.L. Molecular Modeling and Chemoinformatics to Advance the Development of Modulators of Epigenetic Targets. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–26. [Google Scholar]
- Lin, S.; Yang, L. A Simple and Efficient Procedure for the Synthesis of Benzimidazoles Using Air as the Oxidant. Tetrahedron Lett. 2005, 46, 4315–4319. [Google Scholar] [CrossRef]
- Yadav, G.; Ganguly, S. Structure Activity Relationship (SAR) Study of Benzimidazole Scaffold for Different Biological Activities: A Mini-Review. Eur. J. Med. Chem. 2015, 97, 419–443. [Google Scholar] [CrossRef]
- Sluiter, J.; Christoffers, J. Synthesis of 1-Methylbenzimidazoles from Carbonitriles. Synlett 2009, 2009, 63–66. [Google Scholar] [CrossRef]
- Lu, J.; Yang, B.; Bai, Y. Microwave Irradiation Synthesis of 2-Substituted Benzimidazoles Using PPA as a Catalyst under Solvent-Free Conditions. Synth. Commun. 2002, 32, 3703–3709. [Google Scholar] [CrossRef]
- El-All, A.S.A.; Ragab, F.A.F.; El-Din, A.A.M.; Abdalla, M.M.; El-Hefnawi, M.M.; El-Rashedy, A.A. Design, Synthesis and Anticancer Evaluation of Some Selected Schiff Bases Derived from Benzimidazole Derivative. Glob. J. Pharmacol. 2013, 7, 143–152. [Google Scholar] [CrossRef]
- Tarı, Ö.; Gümüş, F.; Açık, L.; Aydın, B. Synthesis, Characterization and DNA Binding Studies of Platinum(II) Complexes with Benzimidazole Derivative Ligands. Bioorg. Chem. 2017, 74, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.C.; Pandya, D.; Vaja, D. Synthesis and Antimicrobial Activity of Some Heterocyclic Compounds Bearing Benzimidazole and Pyrazoline Motifs. Med. Chem. Res. 2018, 27, 52–60. [Google Scholar] [CrossRef]
- Pages, B.J.; Ang, D.L.; Wright, E.P.; Aldrich-Wright, J.R. Metal Complex Interactions with DNA. Dalton Trans. 2015, 44, 3505–3526. [Google Scholar] [CrossRef]
- Giaccone, G. Clinical Perspectives on Platinum Resistance. Drugs 2000, 59, 9–17. [Google Scholar] [CrossRef]
- Çevik, U.A.; Osmaniye, D.; Çavuşoğlu, B.K.; Sağlik, B.N.; Levent, S.; Ilgin, S.; Can, N.Ö.; Özkay, Y.; Kaplancikli, Z.A. Synthesis of Novel Benzimidazole–Oxadiazole Derivatives as Potent Anticancer Activity. Med. Chem. Res. 2019, 28, 2252–2261. [Google Scholar] [CrossRef]
- El-Gohary, N.S.; Shaaban, M.I. Synthesis and Biological Evaluation of a New Series of Benzimidazole Derivatives as Antimicrobial, Antiquorum-Sensing and Antitumor Agents. Eur. J. Med. Chem. 2017, 131, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A. Synthesis and Evaluation of Antimicrobial, Antitubercular and Anticancer Activities of Benzimidazole Derivatives. Egypt. J. Basic Appl. Sci. 2018, 5, 100–109. [Google Scholar] [CrossRef]
- Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and Investigation of Novel Benzimidazole Derivatives as Antifungal Agents. Bioorg. Med. Chem. 2016, 24, 3680–3686. [Google Scholar] [CrossRef]
- Dane, F.; Dalgiç, Ö. The Effects of Fungicide Benomyl (Benlate) on Growth and Mitosis in Onion (Allium Cepa L.) Root Apical Meristem. Acta Biol. Hung. 2005, 56, 119–128. [Google Scholar] [CrossRef]
- Si, W.J.; Wang, X.B.; Chen, M.; Wang, M.Q.; Lu, A.M.; Yang, C.L. Design, Synthesis, Antifungal Activity and 3D-QSAR Study of Novel Pyrazole Carboxamide and Niacinamide Derivatives Containing Benzimidazole Moiety. New J. Chem. 2019, 43, 3000–3010. [Google Scholar] [CrossRef]
- Gullapelli, K.; Brahmeshwari, G.; Ravichander, M.; Kusuma, U. Synthesis, Antibacterial and Molecular Docking Studies of New Benzimidazole Derivatives. Egypt. J. Basic Appl. Sci. 2017, 4, 303–309. [Google Scholar] [CrossRef]
- Küçükbay, H.; Durmazt, R.; Sirecitt, N.; Günalt, S. Synthesis of Some Benzimidazole Derivatives and Their Antibacterial and Antifungal Activities. Asian J. Chem. 2009, 21, 6181–6189. [Google Scholar]
- Wen, J.; Luo, Y.L.; Zhang, H.Z.; Zhao, H.H.; Zhou, C.H.; Cai, G.X. A Green and Convenient Approach toward Benzimidazole Derivatives and Their Antimicrobial Activity. Chin. Chem. Lett. 2016, 27, 391–394. [Google Scholar] [CrossRef]
- Gowda, J.; Khader, A.M.A.; Kalluraya, B.; Hidayathulla, S. Synthesis, Characterization and Antibacterial Activity of Benzimidazole Derivatives Carrying Quinoline Moiety. Indian J. Chem. Sect. B 2011, 50, 1491–1495. [Google Scholar] [CrossRef]
- Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, Synthesis, Antimicrobial Activity and Computational Studies of Novel Azo Linked Substituted Benzimidazole, Benzoxazole and Benzothiazole Derivatives. Comput. Biol. Chem. 2019, 78, 330–337. [Google Scholar] [CrossRef]
- Chhonker, Y.S.; Veenu, B.; Hasim, S.R.; Kaushik, N.; Kumar, D.; Kumar, P. Synthesis and Pharmacological Evaluation of Some New 2-Phenyl Benzimidazoles Derivatives and Their Schiff’s Bases. J. Chem. 2009, 6, 342–347. [Google Scholar] [CrossRef]
- Kuş, C.; Sözüdönmez, F.; Altanlar, N. Synthesis and Antimicrobial Activity of Some Novel 2-[4-(Substituted Piperazin-/Piperidin-1-Ylcarbonyl)Phenyl]- 1 H-Benzimidazole Derivatives. Arch. Pharm. 2009, 342, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Saleh, O.R.; Shaldum, M.A.; Goda, R.M.; Shehata, I.A.; El-Ashmawy, M.B. Synthesis and Antibacterial Evaluation of New2-Phenylbenzimidazole Derivatives. ChemistrySelect 2019, 4, 10307–10315. [Google Scholar] [CrossRef]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal Complexes as a Promising Source for New Antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [PubMed]
- Deo, K.M.; Ang, D.L.; McGhie, B.; Rajamanickam, A.; Dhiman, A.; Khoury, A.; Holland, J.; Bjelosevic, A.; Pages, B.; Gordon, C.; et al. Platinum Coordination Compounds with Potent Anticancer Activity. Coord. Chem. Rev. 2018, 375, 148–163. [Google Scholar] [CrossRef]
- Kenny, R.G.; Marmion, C.J. Toward Multi-Targeted Platinum and Ruthenium Drugs—A New Paradigm in Cancer Drug Treatment Regimens? Chem. Rev. 2019, 119, 1058–1137. [Google Scholar] [CrossRef]
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest Developments in Metal Complexes as Anticancer Agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Aragón-Muriel, A.; Liscano-Martínez, Y.; Rufino-Felipe, E.; Morales-Morales, D.; Oñate-Garzón, J.; Polo-Cerón, D. Synthesis, Biological Evaluation and Model Membrane Studies on Metal Complexes Containing Aromatic N,O-Chelate Ligands. Heliyon 2020, 6, e04126. [Google Scholar] [CrossRef]
- Sabithakala, T.; Chittireddy, V.R.R. DNA Binding and in Vitro Anticancer Activity of 2-((1H-Benzimidazol-2-Yl)Methylamino)Acetic Acid and Its Copper(II) Mixed-Polypyridyl Complexes: Synthesis and Crystal Structure. Appl. Organomet. Chem. 2018, 32, e4550. [Google Scholar] [CrossRef]
- Wu, Y.C.; You, J.Y.; Jiang, K.; Wu, H.Q.; Xiong, J.F.; Wang, Z.Y. Novel Benzimidazole-Based Ratiometric Fluorescent Probes for Acidic PH. Dye. Pigment. 2018, 149, 1–7. [Google Scholar] [CrossRef]
- Sharaby, C.M.; Amine, M.F.; Hamed, A.A. Synthesis, Structure Characterization and Biological Activity of Selected Metal Complexes of Sulfonamide Schiff Base as a Primary Ligand and Some Mixed Ligand Complexes with Glycine as a Secondary Ligand. J. Mol. Struct. 2017, 1134, 208–216. [Google Scholar] [CrossRef]
- Kalarani, R.; Sankarganesh, M.; Kumar, G.G.V.; Kalanithi, M. Synthesis, Spectral, DFT Calculation, Sensor, Antimicrobial and DNA Binding Studies of Co(II), Cu(II) and Zn(II) Metal Complexes with 2-Amino Benzimidazole Schiff Base. J. Mol. Struct. 2020, 1206, 127725. [Google Scholar] [CrossRef]
- Ishak, N.N.M.; Jamsari, J.; Ismail, A.Z.; Tahir, M.I.M.; Tiekink, E.R.T.; Veerakumarasivam, A.; Ravoof, T.B.S.A. Synthesis, Characterisation and Biological Studies of Mixed-Ligand Nickel (II) Complexes Containing Imidazole Derivatives and Thiosemicarbazide Schiff Bases. J. Mol. Struct. 2019, 1198, 126888. [Google Scholar] [CrossRef]
- Apohan, E.; Yilmaz, U.; Yilmaz, O.; Serindag, A.; Küçükbay, H.; Yesilada, O.; Baran, Y. Synthesis, Cytotoxic and Antimicrobial Activities of Novel Cobalt and Zinc Complexes of Benzimidazole Derivatives. J. Organomet. Chem. 2017, 828, 52–58. [Google Scholar] [CrossRef]
- Aragón-Muriel, A.; Liscano, Y.; Upegui, Y.; Robledo, S.M.; Ramírez-Apan, M.T.; Morales-Morales, D.; Oñate-Garzón, J.; Polo-Cerón, D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics 2021, 10, 728. [Google Scholar] [CrossRef]
- Sunitha, M.; Jogi, P.; Ushaiah, B.; Kumari, C.G. Synthesis, Characterization and Antimicrobial Activity of Transition Metal Complexes of Schiff Base Ligand Derived from 3-Ethoxy Salicylaldehyde and 2-(2-Aminophenyl) 1-H-Benzimidazole. J. Chem. 2012, 9, 2516–2523. [Google Scholar] [CrossRef]
- Utku, S.; Topal, M.; Dogen, A.; Serin, M.S. Synthesis, Characterization, Antibacterial and Antifungal Evaluation of Some New Platinum(II) Complexes of 2-Phenylbenzimidazole Ligands. Turk. J. Chem. 2010, 34, 427–436. [Google Scholar] [CrossRef]
- Daisylet, B.S.; Raphael, S.J.; Kumar, P.; Mohan, A.; Dasan, A. Exploring Photocatalytic, Antimicrobial, and Biofilm Inhibition Properties of Cuminaldehyde Derived Benzimidazole Metal Complexes. J. Mol. Struct. 2025, 1328, 141311. [Google Scholar] [CrossRef]
- Masaryk, L.; Tesarova, B.; Choquesillo-Lazarte, D.; Milosavljevic, V.; Heger, Z.; Kopel, P. Structural and Biological Characterization of Anticancer Nickel(II) Bis(Benzimidazole) Complex. J. Inorg. Biochem. 2021, 217, 111395. [Google Scholar] [CrossRef]
- G, P.; Revanasiddappa, H.D.; B, J.; T, P.B.; Shivamallu, C.; Viswanath, P.M.; Achar, R.R.; Silina, E.; Stupin, V.; Manturova, N.; et al. Novel Benzimidazole Derived Imine Ligand and Its Co(III) and Cu(II) Complexes as Anticancer Agents: Chemical Synthesis, DFT Studies, In Vitro and In Vivo Biological Investigations. Pharmaceuticals 2023, 16, 125. [Google Scholar] [CrossRef]
- Ajibola, A.A.; Perveen, F.; Jan, K.; Anibijuwon, I.I.; Shaibu, S.E.; Sieroń, L.; Maniukiewicz, W. A Five-Coordinate Copper(II) Complex Constructed from Sterically Hindered 4-Chlorobenzoate and Benzimidazole: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, DFT, Docking Studies and Antibacterial Activity. Crystals 2020, 10, 991. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Huynh, T.-K.-C.; Ho, G.-T.-T.; Nguyen, T.-H.-A.; Le Anh Nguyen, T.; Dao, D.Q.; Mai, T.V.T.; Huynh, L.K.; Hoang, T.-K.-D. Metal Complexes of Benzimidazole-Derived as Potential Anti-Cancer Agents: Synthesis, Characterization, Combined Experimental and Computational Studies. R. Soc. Open Sci. 2022, 9, 220659. [Google Scholar] [CrossRef] [PubMed]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Maret, W. The Metals in the Biological Periodic System of the Elements: Concepts and Conjectures. Int. J. Mol. Sci. 2016, 17, 66. [Google Scholar] [CrossRef]
- Tao, W.; Zhu, C.; Xu, Q.; Li, S.; Xiong, X.; Cheng, H.; Zou, X.; Lu, X. Electronic Structure and Oxidation Mechanism of Nickel–Copper Converter Matte from First-Principles Calculations. ACS Omega 2020, 5, 20090–20099. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, N.; Princess, R.; Raja, S.J.; Joseph, J. Synthesis, Structural Elucidation, Pharmacological and Molecular Docking Studies of Terpolymer Transition Metal Complexes. J. Mol. Struct. 2021, 1227, 129424. [Google Scholar] [CrossRef]
- Selvaganapathy, M.; Raman, N. Pharmacological Activity of a Few Transition Metal Complexes: A Short Review. J. Chem. Biol. Ther. 2016, 01, 1000108. [Google Scholar] [CrossRef]
- Sahoo, S.C.; Kataria, R.; Mehta, S.K. Copper and Its Complexes: A Pharmaceutical Perspective. In Chemical Drug Design; De Gruyter: Berlin, Germany, 2016; pp. 215–241. [Google Scholar] [CrossRef]
- Haribabu, J.; Jeyalakshmi, K.; Arun, Y.; Bhuvanesh, N.S.P.; Perumal, P.T.; Karvembu, R. Synthesis, DNA/Protein Binding, Molecular Docking, DNA Cleavage and in Vitro Anticancer Activity of Nickel(Ii) Bis(Thiosemicarbazone) Complexes. RSC Adv. 2015, 5, 46031–46049. [Google Scholar] [CrossRef]
- Maru, M.S.; Shah, M.K. Synthesis, Characterization and Antimicrobial Evaluation of Transition Metal Complexes of Monodentate 2-(Substituted Phenyl) -1H-Benzo[d]Imidazoles. Chiang Mai J. Sci. 2015, 42, 217. [Google Scholar]
- Mahmood, K.; Hashmi, W.; Ismail, H.; Mirza, B.; Twamley, B.; Akhter, Z.; Rozas, I.; Baker, R.J. Synthesis, DNA Binding and Antibacterial Activity of Metal(II) Complexes of a Benzimidazole Schiff Base. Polyhedron 2019, 157, 326–334. [Google Scholar] [CrossRef]
- Ashraf, A.; Siddiqui, W.A.; Akbar, J.; Mustafa, G.; Krautscheid, H.; Ullah, N.; Mirza, B.; Sher, F.; Hanif, M.; Hartinger, C.G. Metal Complexes of Benzimidazole Derived Sulfonamide: Synthesis, Molecular Structures and Antimicrobial Activity. Inorganica Chim. Acta 2016, 443, 179–185. [Google Scholar] [CrossRef]
- Lewis, A.; McDonald, M.; Scharbach, S.; Hamaway, S.; Plooster, M.; Peters, K.; Fox, K.M.; Cassimeris, L.; Tanski, J.M.; Tyler, L.A. The Chemical Biology of Cu(II) Complexes with Imidazole or Thiazole Containing Ligands: Synthesis, Crystal Structures and Comparative Biological Activity. J. Inorg. Biochem. 2016, 157, 52–61. [Google Scholar] [CrossRef]
- Kilic, A.; Tas, E.; Yilmaz, I. Synthesis, Spectroscopic and Redox Properties of the Mononuclear. J. Chem. Sci. 2009, 121, 43–56. [Google Scholar] [CrossRef]
- Abd-Elzaher, M.M. Synthesis, Characterization, and Antimicrobial Activity of Cobalt(II), Nickel(II), Copper(II) and Zinc(II) Complexes with Ferrocenyl Schiff Bases Containing a Phenol Moiety. Appl. Organomet. Chem. 2004, 18, 149–155. [Google Scholar] [CrossRef]
- Roopashree, B.; Gayathri, V.; Mukund, H. Synthesis, Characterization, and Biological Activities of Zinc, Cadmium, Copper, and Nickel Complexes Containing Meta -Aminophenyl Benzimidazole. J. Coord. Chem. 2012, 65, 1354–1370. [Google Scholar] [CrossRef]
- El-Sayed, Y.S.; Gaber, M.; El-Nahass, M.N. Structural Elucidation, Spectroscopic, and Metalochromic Studies of 2-(2-Hydroxy Phenyl)-1-H–Benzimidazole Complexes: Metal Ions Sensing, DNA Binding, and Antimicrobial Activity Evaluation. J. Mol. Struct. 2021, 1229, 129809. [Google Scholar] [CrossRef]
- Tavman, A.; Ikiz, S.; Baǧcigil, A.F.; Özgür, N.Y.; AK, S. Synthesis, Characterization, and Antibacterial Effect of 4-Methoxy-2-(5-H/Me/Cl/NO2 -1H-Benzimidazol-2-Yl)-Phenols and Some Transition Metal Complexes. Turk. J. Chem. 2009, 33, 321–331. [Google Scholar] [CrossRef]
- Tavman, A.; Çinarli, A.; Gürbüz, D.; Birteksöz, A.S. Synthesis, Characterization and Antimicrobial Activity of 2-(5-H/ Me/F/Cl/NO2-1H-Benzimidazol-2-Yl)-Benzene-1,4-Diols and Some Transition Metal Complexes. J. Iran. Chem. Soc. 2012, 9, 815–825. [Google Scholar] [CrossRef]
- Tavman, A.; Agh-Atabay, N.M.; Neshat, A.; Gucin, F.; Dulger, B.; Haciu, D. Structural Characterization and Antimicrobial Activity of 2-(5-H/Methyl-1H-Benzimidazol-2-Yl)-4-Bromo/Nitro-Phenol Ligands and Their Fe(NO3)3 Complexes. Transit. Met. Chem. 2006, 31, 194–200. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jovanović, L.S.; Češljević, V.I.; Bjelica, L.J.; Arion, V.B.; Gerbeleu, N.V. Transition metal complexes with the thiosemicarbazide-based ligands—XXIII. Synthesis, physicochemical properties and voltammetric characterization of iron(III) complexes with terdentate and quadridentate thiosemicarbazide derivatives. Polyhedron 1994, 13, 3005–3014. [Google Scholar] [CrossRef]
- Tavman, A.; Ikiz, S.; Bagcigil, A.F.; Özgür, N.Y.; Ak, S. Preparation, Characterization and Antibacterial Effect of 2-Methoxy-6-(5-H/Me/Cl/NO2-1H-Benzimidazol-2-Yl)Phenols and Some Transition Metal Complexes. J. Serbian Chem. Soc. 2009, 74, 537–548. [Google Scholar] [CrossRef]
- Padalkar, V.S.; Patil, V.S.; Gupta, V.D.; Phatangare, K.R.; Umape, P.G.; Sekar, N. Synthesis, Characterization, Thermal Properties, and Antimicrobial Activities of 5-(Diethylamino)-2-(5-Nitro-1 H-Benzimidazol-2-Yl)Phenol and Its Transition Metal Complexes. Int. Sch. Res. Not. Org. Chem. 2011, 2011, 738361. [Google Scholar] [CrossRef] [PubMed]
- Tavman, A.; Boz, I.; Seher Birteksöz, A.; Cinarli, A. Spectral Characterization and Antimicrobial Activity of Cu(II) and Fe(III) Complexes of 2-(5-Cl/NO2-1H-Benzimidazol-2-Yl)-4-Br/NO2-Phenols. J. Coord. Chem. 2010, 63, 1398–1410. [Google Scholar] [CrossRef]
- Tavman, A.; Seher Birteksoz, A.; Oksuzomer, F. Spectral and Thermal Characterization and Antimicrobial Effect of 3-(5-H/Me/Cl/NO2-1H-Benzimidazol-2-Yl)-Benzene-1,2-Diols and Some Transition Metal Complexes. S. Afr. J. Chem. 2012, 65, 150–158. [Google Scholar]
- Kumar, J.; Rai, A.; Raj, V. A Comprehensive Review on the Pharmacological Activity of Schiff Base Containing Derivatives. Org. Med. Chem. 2017, 1, 88–102. [Google Scholar] [CrossRef]
- Liu, X.; Hamon, J.R. Recent Developments in Penta-, Hexa- and Heptadentate Schiff Base Ligands and Their Metal Complexes. Coord. Chem. Rev. 2019, 389, 94–118. [Google Scholar] [CrossRef]
- Li, H.C.; Zheng, Y.F.; Wang, M.Z.; Geng, C.C.; Hou, M.; Liu, C.Q.; Li, W.G. Synthesis, Crystal Structures and Anticancer Studies of Ni (II) and Co (III) Complexes Based on 2-(2-Aminophenyl)-1H-Benzimidazole Schiff Base Derivatives. Inorganica Chim. Acta 2025, 577, 122506. [Google Scholar] [CrossRef]
- Hou, M.; Li, H.C.; An, N.; Li, W.G.; Tong, J. Synthesis, Structure and Anticancer Studies of Cu (II), Ni (II) and Co (II) Complexes Based on 2,3-Dihydroxybenzaldehyde-2-(2-Aminophenyl)Benzimidazole Schiff Base. Arab. J. Chem. 2023, 16, 105144. [Google Scholar] [CrossRef]
- Hou, M.; Li, H.C.; An, N.; Pang, S.Y.; Li, W.G.; Tong, J. Synthesis, Crystal Structures and Anticancer Studies of Ni (II), Co (III) and Zn (II) Complexes Based on 5-Bromosalicylaldehyde-2-(2-Aminophenyl)Benzimidazole Schiff Base. J. Mol. Struct. 2023, 1294, 136500. [Google Scholar] [CrossRef]
FT-IR [cm−1] | TGA | ||||
---|---|---|---|---|---|
Complex | C=N | M-N | M-Cl | Temp. Range [°C] | Lost Fragment |
1 | 1629 | 441 | 399 | 80–170 170–1000 | H2O C24H24N2O8 |
2 | 1629 | 435 | 401 | 30–130 130–860 | 2.5H20 C24H24N2O8 |
3 | 1622 | 447 | 418 | 45–180 180–1000 | 3H2O C28H22 Br2N4O4 |
4 | 1620 | 435 | 406 | 55–160 160–945 | H2O C28H22 Br2 Cl2N4O4 |
6 | 7 | ||
---|---|---|---|
Bond | Length (Å) | Bond | Length (Å) |
Ni-Nimidazole | 1.8448 | Cu-Nimidazole | 1.8262 |
Ni-Ophenol | 1.7860 | Cu-Ophenol | 1.7785 |
Ni-Oacet | 1.7946 | Cu-O(water) | 1.8300 |
Ni-O(water)1 | 1.8331 | - | - |
Ni-O(water)2 | 1.8254 | - | - |
Ni-O(water)3 | 1.8289 | - | - |
Complex | Elemental Analysis: Meas. (Calc.) % | Melting Point (°C) | µeff (BM) | Color | ||
---|---|---|---|---|---|---|
C | H | N | ||||
8 | 43.7 (43.4) | 3.8 (4.1) | 10.5 (10.13) | >350 | 1.75 | Black |
9 | 44.1 (44.2) | 4.2 (3.9) | 11.8 (11.9) | >350 | 2.87 | Black |
10 | 58.5 (58.2) | 4.5 (4.3) | 10.0 (9.7) | 212 | 1.58 | Dark brown |
Compound | Microorganism | ||||||||
---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | |
8 | 312 | NE | NE | 625 | 625 | 625 | >532 | NE | >532 |
9 | 156 | NE | NE | 39 | 625 | 312 | 625 | NE | 625 |
10 | 66.5 | >532 | 133 | 66.5 | >532 | >532 | >532 | >532 | >532 |
Ci | 0.125 | - | - | 156 | 0.0625 | 0.0625 | 2.00 | - | 0.0312 |
Compound | Microorganism | |
---|---|---|
E. coli | S. aureus | |
Ligand | 175 | 125 |
12 | 62.5 | 125 |
13 | 62.5 | 62.5 |
Streptomycin | 125 | 125 |
Bond | Length (Å) | Bond | Angle (°) |
---|---|---|---|
N6----C7 | 1.322 | O24—C19—C20 | 118.0 |
C7----N8 | 1.351 | O24—C19---C18 | 122.6 |
C13---N16 | 1.410 | C17---N16---C13 | 123.4 |
N16---C17 | 1.284 | N16---C17---C18 | 120.1 |
C19---O24 | 1.337 | C7----N8-----C9 | 107.3 |
O24---H24 | 0.8400 |
Complex | Zone of Inhibition (mm) | MIC (µg∙mL−1) | ||||
---|---|---|---|---|---|---|
E. coli | M. luteus | E. aerogenes | E. coli | M. luteus | E. aerogenes | |
17 | 18.8 ± 1.6 | 16.8 ± 1.1 | 13.0 ± 1.2 | 53.0 ± 4.4 | 58.9 ± 2.2 | 76.9 ± 4.6 |
18 | 11.8 ± 0.9 | 14.9 ± 1.0 | - | 84.8 ± 4.8 | 67.1 ± 3.1 | - |
Complex | Molar Weight | Melting Point | % Yield | % C Meas. (Calc.) | % H Meas. (Calc.) | % N Meas. (Calc.) | % M Meas. (Calc.) | Ω (S∙cm2/mol) |
---|---|---|---|---|---|---|---|---|
19 | 527.5 | 195 | 85 | 50.18 (50.04) | 4.33 (4.36) | 7.95 (7.96) | 12.01 (12.12) | 28 |
20 | 522 | 300 | 65 | 50.05 (50.57) | 4.31 (4.40) | 8.10 (8.04) | 11.00 (11.11) | 18 |
Complex | S. aureus | B. subtilis | E. coli | P. fluorescence |
---|---|---|---|---|
19 | 14 | 10 | 17 | 10 |
20 | 11 | 11 | 12 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mañozca-Dosman, I.V.; Aragón-Muriel, A.; Polo-Cerón, D. Antibacterial Activity of Metal Complexes of Cu(II) and Ni(II) with the Ligand 2-(Phenylsubstituted) Benzimidazole. Sci. Pharm. 2025, 93, 22. https://doi.org/10.3390/scipharm93020022
Mañozca-Dosman IV, Aragón-Muriel A, Polo-Cerón D. Antibacterial Activity of Metal Complexes of Cu(II) and Ni(II) with the Ligand 2-(Phenylsubstituted) Benzimidazole. Scientia Pharmaceutica. 2025; 93(2):22. https://doi.org/10.3390/scipharm93020022
Chicago/Turabian StyleMañozca-Dosman, Ivone Vanessa, Alberto Aragón-Muriel, and Dorian Polo-Cerón. 2025. "Antibacterial Activity of Metal Complexes of Cu(II) and Ni(II) with the Ligand 2-(Phenylsubstituted) Benzimidazole" Scientia Pharmaceutica 93, no. 2: 22. https://doi.org/10.3390/scipharm93020022
APA StyleMañozca-Dosman, I. V., Aragón-Muriel, A., & Polo-Cerón, D. (2025). Antibacterial Activity of Metal Complexes of Cu(II) and Ni(II) with the Ligand 2-(Phenylsubstituted) Benzimidazole. Scientia Pharmaceutica, 93(2), 22. https://doi.org/10.3390/scipharm93020022