Four-State Coupled-Line Resonator for Chipless RFID Tags Application
Abstract
:1. Introduction
2. Two-Bit Coupled-Line Stopband Resonator
3. Multi-Resonator Structure Design and Analysis
4. Integrated Chipless RFID Tag Prototype
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Preradovic, S.; Karmakar, N.C. Chipless RFID: Bar code of the future. IEEE Microw. Mag. 2010, 11, 87–97. [Google Scholar]
- Islam, M.A.; Yap, Y.; Karmakar, N. ‘Δ’ slotted compact printable orientation insensitive chipless RFID tag for long range applications. In Proceedings of the 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; pp. 283–286. [Google Scholar]
- Islam, M.; Yap, Y.; Karmakar, N.; Azad, A.K.M. Orientation independent compact chipless RFID tag. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Côte D’Azur, French, 5–7 November 2012; pp. 137–141. [Google Scholar]
- Pöpperl, M.; Parr, A.; Mandel, C.; Jakoby, R.; Vossiek, M. Potential and practical limits of time-domain reflectometry chipless rfid. IEEE Trans. Microw. Theory 2016, 64, 2968–2976. [Google Scholar] [CrossRef]
- Genovesi, S.; Costa, F.; Monorchio, A.; Manara, G. Chipless RFID Tag Exploiting Multifrequency Delta-Phase Quantization Encoding. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1. [Google Scholar] [CrossRef]
- Plessky, V.P.; Reindl, L.M. Review on SAW RFID tags. IEEE Trans. Ultrason. Ferr. 2010, 57, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Herrojo, C.; Mata-Contreras, J.; Núñez, A.; Paredes, F.; Ramon, E.; Martín, F. Near-Field Chipless-RFID System With High Data Capacity for Security and Authentication Applications. IEEE Trans. Microw. Theory 2017, 65, 5298–5308. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Karmakar, N.C. Real-world implementation challenges of a novel dual-polarized compact printable chipless RFID tag. IEEE Trans. Microw. Theory. 2015, 63, 4581–4591. [Google Scholar] [CrossRef]
- Barbot, N.; Perret, E. A Chipless RFID Method of 2D Localization Based on Phase Acquisition. J. Sens. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Balbin, I.; Karmakar, N.C. Phase-encoded chipless RFID transponder for large-scale low-cost applications. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 509–511. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID tag using hybrid coding technique. IEEE Trans. Microw. Theory 2011, 59, 3356–3364. [Google Scholar] [CrossRef]
- Babaeian, F.; Karmakar, N.C. Hybrid Chipless RFID Tags- A Pathway to EPC Global Standard. IEEE Access 2018, 6, 67415–67426. [Google Scholar] [CrossRef]
- Jimenez-Saez, A.; Schusler, M.; Nickel, M.; Jakoby, R. Hybrid time-frequency modulation scheme for chipless wireless identification and sensing. IEEE Sens. J. 2018, 18, 7850–7859. [Google Scholar] [CrossRef]
- Ni, Y.Z.; Huang, X.D.; Lv, Y.P.; Cheng, C.H. Hybrid coding chipless tag based on impedance loading. IET Microw. Antennas Propag. 2017, 11, 1325–1331. [Google Scholar] [CrossRef]
- Karmaker, N.C. Tag, you’re it radar cross section of chipless RFID tags. IEEE Microw. Mag. 2016, 17, 64–74. [Google Scholar] [CrossRef]
- Arjomandi, L.M.; Khadka, G.; Xiong, Z.; Karmakar, N.C.; Zixang, X. Document Verification: A Cloud-Based Computing Pattern Recognition Approach to Chipless RFID. IEEE Access 2018, 6, 78007–78015. [Google Scholar] [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Núñez, A.; Ramon, E.; Martín, F. Near-field chipless-RFID system with erasable/programmable 40-bit tags inkjet printed on paper substrates. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 272–274. [Google Scholar] [CrossRef]
- Marindra, A.M.J.; Tian, G.Y. Chipless RFID Sensor Tag for Metal Crack Detection and Characterization. IEEE Trans. Microw. Theory 2018, 66, 2452–2462. [Google Scholar] [CrossRef]
- Bibile, M.A.; Karmakar, N.C. Moving Chipless RFID Tag Detection Using Adaptive Wavelet-Based Detection Algorithm. IEEE Trans. Antenn. Propag. 2018, 66, 2752–2760. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, R.X.; He, Y.; Tong, M.S. Effective Design of Microstrip-Line Chipless RFID Tags Based on Filter Theory. IEEE Trans. Antenn. Propag. 2019, 67, 1428–1436. [Google Scholar] [CrossRef]
- Adbulkawi, W.M.; Sheta, A.A. A Compact Chipless RFID Tag Based on Frequency Signature. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–4. [Google Scholar]
- Ashraf, M.A.; Alshoudokhi, Y.A.; Behairy, H.M.; Alshareef, M.R.; Alshebeili, S.A.; Issa, K.; Fathallah, H. Design and Analysis of Multi-Resonators Loaded Broadband Antipodal Tapered Slot Antenna for Chipless RFID Applications. IEEE Access 2017, 5, 25798–25807. [Google Scholar] [CrossRef]
- Nijas, C.M.; Dinesh, R.; Deepak, U.; Rasheed, A.; Mridula, S.; Vasudevan, K.; Mohanan, P. Chipless RFID tag using multiple microstrip open stub resonators. IEEE Trans. Antenn. Propag. 2012, 60, 4429–4432. [Google Scholar] [CrossRef]
- Jalil, M.E.; Rahim, M.K.A.; Samsuri, N.A.; Dewan, R. Chipless RFID tag based on meandered line resonator. In Proceedings of the 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Johor Bahru, Malaysia, 8–10 December 2014; pp. 203–206. [Google Scholar]
- Khaliel, M.; El-Hadidy, M.; Kaiser, T. Printable depolarizing chipless RFID tag based on DGS resonators for suppressing the clutter effects. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 12–17 April 2015; pp. 1–5. [Google Scholar]
- Preradovic, S.; Balbin, I.; Karmakar, N.C.; Swiegers, G.F. Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans. Microw. Theory 2009, 57, 1411–1419. [Google Scholar] [CrossRef]
- Preradovic, S.; Karmakar, N.C. Design of fully printable planar chipless RFID transponder with 35-bit data capacity. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 1 October 2009; pp. 013–016. [Google Scholar]
- Preradovic, S.; Karmakar, N.C. Design of Chipless RFID Tag for Operation on Flexible Laminates. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 207–210. [Google Scholar]
- Alves, A.A.C.; Spadoti, D.H.; Bravo-Roger, L.L. Optically Controlled Multiresonator for Passive Chipless Tag. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 467–469. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.A. Printable Chipless RFID Tags for IoT Applications. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–4. [Google Scholar]
- Sharma, V.; Hashmi, M. Chipless RFID tag based on open-loop resonator. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 543–546. [Google Scholar]
- Ma, Z.; Chen, C.C. A hybrid coding retransmitted chipless tag loaded by microstrip resonator. Microelectron. Reliab. 2019, 93, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.H.; Yang, J.H.; Chen, C.C.; Yang, C.F. A re-transmitted chipless tag using CSRR coupled structure. Microsyst. Technol. 2018, 24, 4373–4382. [Google Scholar] [CrossRef] [Green Version]
- Abdulkawi, W.M.; Sheta, A.F.A. Multi-Resonator Structure for Small Size Chipless Radio Frequency Identification Tag. Int. J. Comput. Digit. Syst. 2018, 7, 43–49. [Google Scholar] [CrossRef]
- Jones, E. Coupled-Strip-Transmission-Line Filters and Directional Couplers. IRE Trans. Microw. Theory Tech. 1956, 4, 75–81. [Google Scholar] [CrossRef]
Parameter | wf | gap | lc | wc | lv | wv | S1 | S2 |
---|---|---|---|---|---|---|---|---|
Value (mm) | 2.4 | 0.2 | 9.55 | 0.5 | 3.8 | 0.5 | 2 | 1.3 |
Possible States | Arm 1 | Arm 2 | fr | Binary Code |
---|---|---|---|---|
1st state (S1) | Not connected | Not connected | 0 | 00 |
2nd state (S2) | Not connected | Connected | f2 | 01 |
3rd state (S3) | Connected | Not connected | f1 | 10 |
4th state (S4) | Connected | Connected | f1f2 | 11 |
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
Patch length (Lp) | 39.6 | Ground length (Lg) | 34.5 |
Patch width (Wp) | 25 | Ground width (Wg) | 25 |
Gap between the patch and ground plane (gap) | 0.52 | Feeder length (Lf) | 35 |
Feeder width (Wf) | 2.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkawi, W.M.; Sheta, A.-F.A. Four-State Coupled-Line Resonator for Chipless RFID Tags Application. Electronics 2019, 8, 581. https://doi.org/10.3390/electronics8050581
Abdulkawi WM, Sheta A-FA. Four-State Coupled-Line Resonator for Chipless RFID Tags Application. Electronics. 2019; 8(5):581. https://doi.org/10.3390/electronics8050581
Chicago/Turabian StyleAbdulkawi, Wazie M., and Abdel-Fattah A. Sheta. 2019. "Four-State Coupled-Line Resonator for Chipless RFID Tags Application" Electronics 8, no. 5: 581. https://doi.org/10.3390/electronics8050581
APA StyleAbdulkawi, W. M., & Sheta, A.-F. A. (2019). Four-State Coupled-Line Resonator for Chipless RFID Tags Application. Electronics, 8(5), 581. https://doi.org/10.3390/electronics8050581