You are currently viewing a new version of our website. To view the old version click .
Electronics
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

10 December 2025

Stability Analysis of Electricity Grids with High Renewable Penetration Using a Grid-Forming Approach

,
,
and
Renewable Energy Research Institute, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
*
Author to whom correspondence should be addressed.
Electronics2025, 14(24), 4871;https://doi.org/10.3390/electronics14244871 
(registering DOI)

Abstract

The ongoing decarbonisation of power systems is displacing synchronous generators (SGs) with converter-based plants, requiring a consistent assessment of grid-following inverters (GFLIs) and grid-forming inverters (GFMIs). Using an openly available four-bus root-mean-square (RMS) benchmark modelled in DIgSILENT PowerFactory, this work compares three generation configurations: (i) a single local SG connected at the point of common coupling; (ii) the same generator combined with a GFLI; and (iii) the generator combined with a GFMI. These configurations are evaluated under three disturbance scenarios: (1) a balanced load step, (2) an unbalanced double line-to-ground fault at low short-circuit ratio (SCR) with temporary islanding and single-shot auto-reclose, and (3) full islanding with under-frequency load shedding (UFLS), partial resynchronisation, and staged restoration. For the tested tuning ranges and within this RMS benchmark, the grid-forming configuration behaves as a low-impedance source at the point of common coupling in the phasor sense, yielding higher frequency nadirs during active-power disturbances and faster positive-sequence voltage recovery under weak and unbalanced conditions than the SG-only and SG+GFLI cases. During islanding, it supports selective UFLS, secure resynchronisation, and orderly load restoration. Rather than introducing new control theory, this work contributes a reproducible RMS benchmarking framework that integrates low-SCR operation, unbalance, and restoration sequences with a documented cross-technology tuning procedure. The findings indicate system-level improvements in frequency resilience and voltage recovery for the tested benchmark relative to the alternative configurations, while recognising that instantaneous device-level effects and broader generality will require electromagnetic-transient (EMT) or hybrid EMT/RMS validation in future work.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.