Method of Accelerated Low-Frequency Oscillation Analysis in Low-Inertia Power Systems Based on Orthogonal Decomposition
Abstract
1. Introduction
- Oscillations between SGs within one power plant (2–3 Hz);
- Oscillations of one SG relative to the EPS (0.8–1.6 Hz);
- Oscillations between SG groups (0.2–0.7 Hz).
2. Current State of the Problem
- Wavelet transform (WT) [17];
- Empirical wavelets transform (EWT) [18];
- Synchrosqueezed wavelet transforms (SWT) [19];
- Prony transform (PT) [20];
- Improved Hilbert–Huang transform (IHHT) [21];
- Auto-regressive moving average (ARMA) [22];
- Linear predictive code (LPC) [23];
- Adaptive matrix pencil algorithm (AMPA) [24];
- Adaptive total least squares-estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) [25];
- Principal component analysis (PCA) [26];
- Underdetermined Blind Source Separation Algorithm (UBSS) [27];
- Method of sliding statistical segments (SSS) [28];
- Artificial neural networks (ANNs) [29].
3. Method for Accelerated LFO Parameter Estimation
4. Testing the Method of Accelerated LFO Parameters Estimation
4.1. Synthetic Data
4.2. Phisical Data
4.3. Comparison of the Proposed Method with SSS and VMD
4.4. Assessment of the Impact of Noise in the Raw Data on the Accuracy of Estimating LFO Parameters
5. Discussion
- Developing the architecture of the system for collecting and analyzing signals describing the change in active power, currents and frequency during the LFO process. This architecture must be fault-tolerant, scalable and fast;
- Determining the permissible sampling frequencies and update times for signals defining the electrical mode parameters, allowing the LFO parameters to be estimated with acceptable speed and accuracy;
- Developing a method for selecting and implementing control actions that ensure LFO damping;
- Determining the list of functional capabilities required to analyze LFO parameters in autonomous mode;
- Determining the optimal number of PMUs required for a comprehensive analysis of the oscillatory component of low-inertia EPS with a significant share of wind power plants and control systems based on power electronics.
- Developing requirements for communication channels between the control system and control objects in the EPS.
6. Conclusions
- Development of an accelerated method for determining the LFO source [42];
- Development of a method for automatically determining the width of the design cone depending on the noise level in the initial data.
- The developed algorithm is universal and independent of the applied EPS mathematical model. For further detailed study of the method, it is planned to test it on IEEE39 and IEEE118 EPS mathematical models.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPA | Adaptive matrix pencil algorithm |
TLS-ESPRIT | Adaptive total least squares-estimation of signal parameters via rotational invariance techniques |
ANN | Artificial neural networks |
AVR | Automatic voltage regulator |
ARMA | Auto-regressive moving average |
CA | Control action |
DG | Distributed generation |
DMD | Dynamic mode decomposition |
EPS | Electrical power system |
EMD | Empirical mode decomposition |
VMD | Empirical mode decomposition |
EWT | Empirical wavelet transform |
IHHT | Improved Hilbert–Huang transform |
IAMD | Improved variational modal decomposition |
LPC | Linear predictive code |
LFO | Low-frequency oscillation |
PMU | Phasor measurement unit |
PSS | Power system stabilizer |
PCA | Principal component analysis |
PDC | Phasor data concentrator |
PM | Prony’s method |
PT | Prony’s transform |
RES | Renewable sources of energy |
SC | Short circuit |
SSS | Sliding statistical segments |
SG | Synchronous generator |
SWT | Synchrosqueezed wavelet transforms |
UBSS | Underdetermined Blind Source Separation |
VMD | Variational mode decomposition |
WT | Wavelet transform |
References
- Wu, Y.; Ge, L.; Yuan, X.; Fu, X.; Wang, M. Adaptive Power Control Based on Double-layer Q-learning Algorithm for Multi-parallel Power Conversion Systems in Energy Storage Station. J. Mod. Power Syst. Clean Energy 2022, 10, 1714–1724. [Google Scholar] [CrossRef]
- Madurasinghe, D.; Venayagamoorthy, G.K. Distributed Dynamic Security Assessment for Modern Power System Operational Situational Awareness. IEEE Access 2024, 12, 147991–148010. [Google Scholar] [CrossRef]
- Ouyang, J.; Yu, J.; Long, X.; Diao, Y.; Wang, J. Coordination Control Method to Block Cascading Failure of a Renewable Generation Power System Under Line Dynamic Security. Prot. Control Mod. Power Syst. 2023, 8, 12. [Google Scholar] [CrossRef]
- Wu, G.; Sun, H.; Zhao, B.; Xu, S.; Zhang, X.; Egea-Alvarez, A.; Wang, S.; Li, G.; Li, Y.; Zhou, X. Low-Frequency Converter-Driven Oscillations in Weak Grids: Explanation and Damping Improvement. IEEE Trans. Power Syst. 2021, 36, 5944–5947. [Google Scholar] [CrossRef]
- Li, Y.; Fan, L.; Miao, Z. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. IEEE Trans. Power Syst. 2020, 35, 109–118. [Google Scholar] [CrossRef]
- Gupta, D.P.S.; Sen, I. Low frequency oscillations in power systems: A physical account and adaptive stabilizers. Sadhana 1993, 18, 843–868. [Google Scholar] [CrossRef]
- Kovalenko, P.Y. Comparing the approaches to the measurements-based express-analysis of low-frequency oscillations in power systems. In Proceedings of the 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Bi, J.; Sun, H.; Xu, S.; Song, R.; Zhao, B.; Guo, Q. Mode-based Damping Torque Analysis in Power System Low-frequency Oscillations. CSEE J. Power Energy Syst. 2023, 9, 1337–1347. [Google Scholar] [CrossRef]
- Xue, T.; Zhang, J.; Bu, S. Inter-Area Oscillation Analysis of Power System Integrated With Virtual Synchronous Generators. IEEE Trans. Power Deliv. 2024, 39, 1761–1773. [Google Scholar] [CrossRef]
- Cai, X.; Shu, Z.; Deng, J.; Yang, L.; Zhou, N.; Cheng, S.; Tao, X. Location and Identification Method for Low Frequency Oscillation Source Considering Control Devices of Generator. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 818–827. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Z.; Dong, Z.; Yang, S. Modal Identification of Low-Frequency Oscillations in Power Systems Based on Improved Variational Modal Decomposition and Sparse Time-Domain Method. Sustainability 2022, 14, 16867. [Google Scholar] [CrossRef]
- Paternina, M.R.A.; Tripathy, R.K.; Zamora-Mendez, A.; Dotta, D. Identification of electromechanical oscillatory modes based on variational mode decomposition. Electr. Power Syst. Res. 2019, 167, 71–85. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Xin, Y.; Xing, J.-F.; Ren, W.-X. Hilbert low-pass filter of non-stationary time sequence using analytical mode decomposition. J. Vib. Control 2017, 23, 2444–2469. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zhao, Q. Online Monitoring of Low-Frequency Oscillation Based on the Improved Analytical Modal Decomposition Method. IEEE Access 2020, 8, 215256–215266. [Google Scholar] [CrossRef]
- Zuhaib, M.; Rihan, M. Identification of Low-Frequency Oscillation Modes Using PMU Based Data-Driven Dynamic Mode Decomposition Algorithm. IEEE Access 2021, 9, 49434–49447. [Google Scholar] [CrossRef]
- Samanta, S.; Lagoa, C.M.; Chaudhuri, N.R. Nonlinear Model Predictive Control for Droop-Based Grid Forming Converters Providing Fast Frequency Support. IEEE Trans. Power Deliv. 2024, 39, 790–800. [Google Scholar] [CrossRef]
- Rueda, J.L.; Juarez, C.A.; Erlich, I. Wavelet-Based Analysis of Power System Low-Frequency Electromechanical Oscillations. IEEE Trans. Power Syst. 2011, 26, 1733–1743. [Google Scholar] [CrossRef]
- Philip, J.G.; Yang, Y.; Jung, J. Identification of Power System Oscillation Modes Using Empirical Wavelet Transform and Yoshida-Bertecco Algorithm. IEEE Access 2022, 10, 48927–48935. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H.-T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Sanchez-Gasca, J.J.; Chow, J.H. Performance comparison of three identification methods for the analysis of electromechanical oscillations. IEEE Trans. Power Syst. 1999, 14, 995–1002. [Google Scholar] [CrossRef]
- Yang, D.C.; Rehtanz, C.; Li, Y. Analysis of Low Frequency Oscillations using improved Hilbert-Huang Transform. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Wies, R.W.; Pierre, J.W.; Trudnowski, D.J. Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems. In Proceedings of the 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), Toronto, ON, Canada, 13–17 July 2003; p. 2096. [Google Scholar] [CrossRef]
- Doraiswami, R.; Liu, W. Real-time estimation of the parameters of power system small signal oscillations. IEEE Trans. Power Syst. 1993, 8, 74–83. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Mohamed, M.A.; Jin, T. An Adaptive Matrix Pencil Algorithm Based-Wavelet Soft-Threshold Denoising for Analysis of Low Frequency Oscillation in Power Systems. IEEE Access 2020, 8, 7244–7255. [Google Scholar] [CrossRef]
- Chen, J.; Jin, T.; Mohamed, M.A.; Wang, M. An Adaptive TLS-ESPRIT Algorithm Based on an S-G Filter for Analysis of Low Frequency Oscillation in Wide Area Measurement Systems. IEEE Access 2019, 7, 47644–47654. [Google Scholar] [CrossRef]
- Román-Messina, A.; Castillo-Tapia, A.; Román-García, D.A.; Hernández-Ortega, M.A.; Morales-Rergis, C.A.; Castro-Arvizu, C.M. Distributed Monitoring of Power System Oscillations Using Multiblock Principal Component Analysis and Higher-order Singular Value Decomposition. J. Mod. Power Syst. Clean Energy 2022, 10, 818–828. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.; Liu, Z.; Liu, Y. Application of Underdetermined Blind Source Separation Algorithm on the Low-Frequency Oscillation in Power Systems. Energies 2023, 16, 3571. [Google Scholar] [CrossRef]
- Senyuk, M.; Elnaggar, M.F.; Safaraliev, M.; Kamalov, F.; Kamel, S. Statistical Method of Low Frequency Oscillations Analysis in Power Systems Based on Phasor Measurements. Mathematics 2023, 11, 393. [Google Scholar] [CrossRef]
- Satheesh, R.; Chakkungal, N.; Rajan, S.; Madhavan, M.; Alhelou, H.H. Identification of Oscillatory Modes in Power System Using Deep Learning Approach. IEEE Access 2022, 10, 16556–16565. [Google Scholar] [CrossRef]
- Shair, J.; Xie, X.; Li, H.; Terzija, V. New-Type Power System Stabilizers (NPSS) for Damping Wideband Oscillations in Converter-Dominated Power Systems. CSEE J. Power Energy Syst. 2025, 11, 1186–1198. [Google Scholar] [CrossRef]
- Jiang, X.; Yi, H.; Li, Y.; Zhuo, F.; Wang, Z.; Yu, D.; Zhang, Z. Low-Frequency Oscillation Damping of Grid-Forming STATCOMs With Phase-Compensated DC-Link Voltage Synchronization. IEEE Trans. Power Electron. 2025, 40, 2860–2873. [Google Scholar] [CrossRef]
- Adam, M.E.; Das, B.; Mohammed, B. Identification of PMU Measurements-Based Low-Frequency Oscillation Modes in the IEEE 39 Bus System via DMD. In Proceedings of the 2024 5th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), Veliko Tarnovo, Bulgaria, 20–22 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Q.; Lyu, X.; Zhu, W. Low-frequency Oscillation Analysis of Railway Train-Network System Considering the Two Feeding Sections of the Traction Substation Based on Harmonic State-space Modeling. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024; pp. 323–328. [Google Scholar] [CrossRef]
- Zhao, G.; Xiong, H.; Zhang, H.; Zhang, Q.; Shi, L.; Fan, C. Research on Wide-area Monitoring and Location of Wide-frequency Oscillation in New Type Power System. In Proceedings of the 2024 9th Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 11–13 April 2024; pp. 483–488. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Gregory, D.; Zhou, X.; Rabbani, R. A Survey of Oscillation Localization Techniques in Power Systems. IEEE Access 2025, 13, 28836–28860. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Wang, Y.; Ding, R.; Zheng, Y.; Wang, Y.; Zha, X.; Cheng, X. Reactive Voltage Partitioning Method for the Power Grid With Comprehensive Consideration of Wind Power Fluctuation and Uncertainty. IEEE Access 2020, 8, 124514–124525. [Google Scholar] [CrossRef]
- Senyuk, M.; Safaraliev, M.; Kamalov, F.; Sulieman, H. Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology. Mathematics 2023, 11, 525. [Google Scholar] [CrossRef]
- Senyuk, M.; Beryozkina, S.; Berdin, A.; Moiseichenkov, A.; Safaraliev, M.; Zicmane, I. Testing of an Adaptive Algorithm for Estimating the Parameters of a Synchronous Generator Based on the Approximation of Electrical State Time Series. Mathematics 2022, 10, 4187. [Google Scholar] [CrossRef]
- Sidwall, K.; Forsyth, P. A Review of Recent Best Practices in the Development of Real-Time Power System Simulators from a Simulator Manufacturer’s Perspective. Energies 2022, 15, 1111. [Google Scholar] [CrossRef]
- Yadav, G.; Liao, Y.; Burfield, A.D. Hardware-in-the-Loop Testing for Protective Relays Using Real Time Digital Simulator (RTDS). Energies 2023, 16, 1039. [Google Scholar] [CrossRef]
- Song, J.; Hur, K.; Lee, J.; Lee, H.; Lee, J.; Jung, S.; Shin, J.; Kim, H. Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System. Energies 2020, 13, 3955. [Google Scholar] [CrossRef]
- Pathan, M.I.H.; Rana, M.J.; Shahriar, M.S.; Shafiullah, M.; Zahir, M.H.; Ali, A. Real-Time LFO Damping Enhancement in Electric Networks Employing PSO Optimized ANFIS. Inventions 2020, 5, 61. [Google Scholar] [CrossRef]
- Senyuk, M.; Odinaev, I.; Klassen, V.; Ahyoev, J. Accelerated Power System Equivalent Algorithm for Emergency Control Based on Phasor Measurement Units. In Proceedings of the 2023 Belarusian-Ural-Siberian Smart Energy Conference (BUSSEC), Ekaterinburg, Russia, 25–29 September 2023; pp. 7–12. [Google Scholar] [CrossRef]
- Senyuk, M.; Odinaev, I.; Pichugova, O.; Ahyoev, J. Methodology for Forming a Training Sample for Power Systems Emergency Control Algorithm Based on Machine Learning. In Proceedings of the 2023 Belarusian-Ural-Siberian Smart Energy Conference (BUSSEC), Ekaterinburg, Russia, 25–29 September 2023; pp. 54–59. [Google Scholar] [CrossRef]
- Senyuk, M.D.; Kovalenko, P.Y.; Mukhin, V.I.; Dmitrieva, A.A. Estimation of Acceptable ADC Sampling Rate for Synchrophasor Measurements. In Proceedings of the 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, 16–18 November 2021; pp. 74–78. [Google Scholar] [CrossRef]
- Wan, Y.; Xing, M.; Wang, H. Parameter Identification of PSS/E Wind Turbine Generator Model Using Improved Particles Swarm Optimization Algorithm. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 12–14 May 2023; pp. 350–355. [Google Scholar] [CrossRef]
Ref.—Method | Time Delay | Characteristics |
---|---|---|
[10]—M1 | Full interval of LFO | (+) the adaptivity doe to the absence of basic function; (−) lack of opportunity to isolate modes with close frequencies; the complexity in decomposing narrowband signals into dominant modes; sensitivity to noises in signal. |
[11,12]—M2 | Full interval of LFO | (+) the robustness to noises in signal; (−) the complexity in determining method parameters. |
[13]—M3 | Full interval of LFO | (+) relatively simple implementation; (−) the possibility of discrepancy in the procedure of identifying low-frequency components. |
[14]—M4 | Starting form 5 c | (+) relatively simple implementation; (−) the particle swarm method tends to stop at a local minimum of the objective function. |
[15]—M5 | Full interval of LFO | (+) robustness to noises due to SVD; (−) the error of the method is directly proportional to the nonlinearity of the signal. |
[17]—M6 | Full interval of LFO | (+) relatively high adaptivity; (−) the complexity of choosing the mother wavelet, center frequency and bandwidth parameters. |
[18]—M7 | Starting form 60 c | (+) relatively high efficiency; (−) lack of a universal method for setting the method parameters. |
[19]—M8 | Full interval of LFO | (+) obstruction of the phenomenon of spectrum spreading; (−) the complexity of choosing the mother wavelet. |
[20]—M9 | Full interval of LFO | (+) the ability to estimates the decay of the signal; (−) the complexity of choosing the methods parameters. |
[21]—M10 | Full interval of LFO | (+) the ability to exclude mode shift issues (−) there is not enough testing. |
[22]—M11 | Less than 1 LFO cycle | (+) relatively little time delay; (−) high sensitivity to outliers in the source data. |
[23]—M12 | Starting form 3 c | (+) low calculating burden; (−) lack of testing on physical signals. |
[24]—M13 | Full interval of LFO | (+) automatic selection of dominant modes of the oscillatory process and effective noise suppression; (−) lack of testing on physical signals. |
[25]—M14 | Full interval of LFO | (+) the robustness to the white noise in the signal; (−) lack of testing on physical signals. |
[26]—M15 | Starting form 10 c | (+) decreasing noise of the signal; (−) lack of testing on physical signals. |
[27]—M16 | Full interval of LFO | (+) noise reduction using the fast independent component analysis; (−) lack of testing on physical signals. |
[28]—M17 | Half of LFO cycle | (+) simple implementation and low calculating burden; (−) the complexity of choosing the method parameters. |
[29]—M18 | Half of LFO cycle | (+) high adaptivity and relatively low time delay; (−) lack of testing on physical signals. |
Parameter | Value | Parameter | Value |
---|---|---|---|
Xd | 1.8 p.u. | Ra | 0.0025 p.u. |
Xq | 1.7 p.u. | Td0′ | 8.0 s |
Xd′ | 0.3 p.u. | Tq0′ | 0.4 s |
Xd″ | 0.25 p.u. | Td0″ | 0.03 s |
Xq′ | 0.55 p.u. | Tq0″ | 0.05 s |
Xq″ | 0.25 p.u. | H | 6.5 p.u. |
Load | P, MW | Q, Mvar |
---|---|---|
L1 | 967 | 100 |
L2 | 1767 | 100 |
Parameter | Value, MW |
---|---|
Average value ∆x | 1.6 |
Maximum value of ∆x | 2.8 |
Minimum value of ∆x | 0.1 |
Generator | Pref, MW | xd, p.u. | xq, p.u. | xd′, p.u. | xq′, p.u. |
---|---|---|---|---|---|
WG1 | 150 | – | – | – | – |
WG2 | 150 | – | – | – | – |
WG7 | 300 | – | – | – | – |
SG13 | 600 | 0.254 | 0.241 | 0.050 | 0.081 |
SG15 | 200 | 0.100 | 0.069 | 0.031 | 0.008 |
SG16 | 150 | 0.262 | 0.285 | 0.043 | 0.166 |
SG18 | 400 | 0.210 | 0.205 | 0.057 | 0.058 |
SG21 | 400 | 0.210 | 0.205 | 0.057 | 0.058 |
SG22 | 300 | 0.295 | 0.282 | 0.069 | 0.170 |
SG23 | 300 | 0.295 | 0.282 | 0.069 | 0.170 |
Bus Number | P, MW | Q, MVAr | Vmax, p.u. | Vmin, p.u. |
---|---|---|---|---|
1 | 108.0 | 22.0 | 1.05 | 0.95 |
2 | 97.0 | 20.0 | 1.05 | 0.95 |
4 | 74.0 | 15.0 | 1.05 | 0.95 |
5 | 71.0 | 14.0 | 1.05 | 0.95 |
6 | 136.0 | 28.0 | 1.05 | 0.95 |
9 | 175.0 | 36.0 | 1.05 | 0.95 |
13 | 265.0 | 54.0 | 1.05 | 0.95 |
15 | 317.0 | 64.0 | 1.05 | 0.95 |
16 | 100.0 | 20.0 | 1.05 | 0.95 |
18 | 333.0 | 68.0 | 1.05 | 0.95 |
20 | 128.0 | 26.0 | 1.05 | 0.95 |
Parameter | Value, MW |
---|---|
Average value ∆x | 0.15 |
Maximum value of ∆x | 3.16 |
Minimum value of ∆x | 0.02 |
Parameter | Value |
---|---|
Active power, MW | 165.00 |
Power factor | 0.85 |
Stator voltage, kV | 18.00 |
Stator current, kA | 6.20 |
Rated rotor current, kA | 1.50 |
Parameter | Signal 1 | Signal 2 | Signal 3 |
---|---|---|---|
Average value ∆x, MW | 0.12 | 0.17 | 0.22 |
Maximum value of ∆x, MW | 1.12 | 2.56 | 4.38 |
Minimum value of ∆x, MW | 0.02 | 0.07 | 1.34 |
Parameter | Proposed Method | VMD | SSS |
---|---|---|---|
Four-Machine Kundur Model | |||
Average value ∆x, MW | 1.61 | 1.94 | 3.47 |
Maximum value of ∆x, MW | 2.85 | 3.13 | 4.58 |
Minimum value of ∆x, MW | 0.17 | 0.21 | 0.63 |
IEEE24 | |||
Average value ∆x, MW | 0.15 | 0.17 | 1.65 |
Maximum value of ∆x, MW | 3.16 | 3.21 | 4.12 |
Minimum value of ∆x, MW | 0.02 | 0.04 | 0.82 |
Physical signal 1 | |||
Average value ∆x, MW | 0.12 | 0.14 | 2.14 |
Maximum value of ∆x, MW | 1.12 | 1.23 | 5.52 |
Minimum value of ∆x, MW | 0.02 | 0.04 | 0.87 |
Physical signal 2 | |||
Average value ∆x, MW | 0.17 | 0.19 | 1.14 |
Maximum value of ∆x, MW | 2.56 | 2.74 | 3.50 |
Minimum value of ∆x, MW | 0.07 | 0.09 | 0.96 |
Physical signal 3 | |||
Average value ∆x, MW | 0.22 | 0.28 | 2.80 |
Maximum value of ∆x, MW | 4.38 | 4.45 | 7.12 |
Minimum value of ∆x, MW | 1.34 | 1.47 | 2.19 |
Noise, dB | Average Value Signal with Noise ∆x, MW |
---|---|
0 | 0.15 |
5 | 0.17 |
10 | 0.21 |
15 | 0.22 |
20 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senyuk, M.; Beryozkina, S.; Odinaev, I.; Zicmane, I.; Safaraliev, M. Method of Accelerated Low-Frequency Oscillation Analysis in Low-Inertia Power Systems Based on Orthogonal Decomposition. Electronics 2025, 14, 4105. https://doi.org/10.3390/electronics14204105
Senyuk M, Beryozkina S, Odinaev I, Zicmane I, Safaraliev M. Method of Accelerated Low-Frequency Oscillation Analysis in Low-Inertia Power Systems Based on Orthogonal Decomposition. Electronics. 2025; 14(20):4105. https://doi.org/10.3390/electronics14204105
Chicago/Turabian StyleSenyuk, Mihail, Svetlana Beryozkina, Ismoil Odinaev, Inga Zicmane, and Murodbek Safaraliev. 2025. "Method of Accelerated Low-Frequency Oscillation Analysis in Low-Inertia Power Systems Based on Orthogonal Decomposition" Electronics 14, no. 20: 4105. https://doi.org/10.3390/electronics14204105
APA StyleSenyuk, M., Beryozkina, S., Odinaev, I., Zicmane, I., & Safaraliev, M. (2025). Method of Accelerated Low-Frequency Oscillation Analysis in Low-Inertia Power Systems Based on Orthogonal Decomposition. Electronics, 14(20), 4105. https://doi.org/10.3390/electronics14204105