# Analyzing Accurate Egocentric Distance Estimates of University Students in Virtual Environments with a Desktop Display and Gear VR Display

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- RQ1: Are the probabilities of accurate egocentric distance estimates affected by human characteristics at different immersion levels?
- RQ2: Are egocentric distance estimation times affected by human characteristics at different immersion levels?

## 2. Materials and Methods

#### 2.1. The Virtual Environment

#### 2.2. Data Collection

#### 2.3. Data Analysis

## 3. Results

- M, male;
- F, female;
- LH, left-handed;
- RH, right-handed;
- DD, desktop display;
- GVR, Gear VR display;
- H, height (e.g., H150–154 denotes heights between 150 cm and 154 cm);
- GH, gaming hours per week (e.g., GH3–4 denotes playing 3–4 h per week of video games);
- VRX, VR experience;
- NVRX, no VR experience.

#### 3.1. Analysis of the Effects of Human Factors on the Probabilities of Accurate Distance Estimates

#### 3.1.1. One-by-One Analyses

#### 3.1.2. Analyses in Pairs

#### 3.1.3. Analyses in Triplets

#### 3.1.4. Analyses in Quartets

#### 3.2. Analyses of the Effects of Human Factors on Distance Estimation Time

#### 3.2.1. One-by-One Analyses

#### 3.2.2. Analyses in Pairs

#### 3.2.3. Analyses in Triplets

#### 3.2.4. Analyses in Quartets

#### 3.2.5. Analyses in Quintets

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Table A1.**The average rates of accurate distance estimates and their standard deviations, grouped by gender.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

Male | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.30$ | $M=0.18\phantom{\rule{0ex}{0ex}}SD=0.39$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.34\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

Female | $M=0.07\phantom{\rule{0ex}{0ex}}SD=0.26$ | $M=0.21\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.34\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.55\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.48\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.52\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A2.**The average rates of accurate distance estimates and their standard deviations, grouped by dominant hand.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

Left-handed | $M=0.05\phantom{\rule{0ex}{0ex}}SD=0.22$ | $M=0.18\phantom{\rule{0ex}{0ex}}SD=0.39$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.22\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.34\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.51\phantom{\rule{0ex}{0ex}}SD=0.50$ |

Right-handed | $M=0.11\phantom{\rule{0ex}{0ex}}SD=0.31$ | $M=0.19\phantom{\rule{0ex}{0ex}}SD=0.39$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.45\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A3.**The average rates of accurate distance estimates and their standard deviations, grouped by whether the participants wore glasses.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

Glasses | $M=0.12\phantom{\rule{0ex}{0ex}}SD=0.32$ | $M=0.21\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.29\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.51\phantom{\rule{0ex}{0ex}}SD=0.50$ |

No glasses | $M=0.08\phantom{\rule{0ex}{0ex}}SD=0.28$ | $M=0.18\phantom{\rule{0ex}{0ex}}SD=0.38$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.45\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A4.**The average rates of accurate distance estimates and their standard deviations, grouped by whether the participants had previous VR experience.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

VR experience | $M=0.09\phantom{\rule{0ex}{0ex}}SD=0.29$ | $M=0.24\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.32\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ |

No VR experience | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.30$ | $M=0.16\phantom{\rule{0ex}{0ex}}SD=0.37$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A5.**The average rates of accurate distance estimates and their standard deviations, grouped by the participants’ field of study.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

Civil engineering | $M=0.09\phantom{\rule{0ex}{0ex}}SD=0.29$ | $M=0.15\phantom{\rule{0ex}{0ex}}SD=0.36$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.23\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ |

Mechanical engineering | $M=0.02\phantom{\rule{0ex}{0ex}}SD=0.14$ | $M=0.11\phantom{\rule{0ex}{0ex}}SD=0.32$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.20\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ |

Vehicle engineering | $M=0.09\phantom{\rule{0ex}{0ex}}SD=0.29$ | $M=0.23\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.51\phantom{\rule{0ex}{0ex}}SD=0.50$ |

IT | $M=0.14\phantom{\rule{0ex}{0ex}}SD=0.35$ | $M=0.24\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A6.**The average rates of accurate distance estimates and their standard deviations, grouped by heights of the participants (cm).

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

150–154 | $M=0.17\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.17\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.55$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.55$ | $M=0.17\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.55$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.52$ |

155–159 | $M=0.00\phantom{\rule{0ex}{0ex}}SD=0.00$ | $M=0.00\phantom{\rule{0ex}{0ex}}SD=0.00$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.20\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.20\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.53$ |

160–164 | $M=0.12\phantom{\rule{0ex}{0ex}}SD=0.33$ | $M=0.19\phantom{\rule{0ex}{0ex}}SD=0.40$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.62\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.62\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.62\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.51$ |

165–169 | $M=0.07\phantom{\rule{0ex}{0ex}}SD=0.26$ | $M=0.22\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.22\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.48\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.34\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.52\phantom{\rule{0ex}{0ex}}SD=0.50$ |

170–174 | $M=0.04\phantom{\rule{0ex}{0ex}}SD=0.21$ | $M=0.15\phantom{\rule{0ex}{0ex}}SD=0.36$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

175–179 | $M=0.06\phantom{\rule{0ex}{0ex}}SD=0.25$ | $M=0.15\phantom{\rule{0ex}{0ex}}SD=0.36$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.22\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

180–184 | $M=0.11\phantom{\rule{0ex}{0ex}}SD=0.31$ | $M=0.20\phantom{\rule{0ex}{0ex}}SD=0.40$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.21\phantom{\rule{0ex}{0ex}}SD=0.41$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.45\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ |

185–189 | $M=0.19\phantom{\rule{0ex}{0ex}}SD=0.39$ | $M=0.20\phantom{\rule{0ex}{0ex}}SD=0.40$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.48\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.50$ |

190–194 | $M=0.04\phantom{\rule{0ex}{0ex}}SD=0.19$ | $M=0.21\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.51$ | $M=0.18\phantom{\rule{0ex}{0ex}}SD=0.39$ | $M=0.32\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.29\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.29\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.50$ |

195–199 | $M=0.13\phantom{\rule{0ex}{0ex}}SD=0.34$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.51$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.51$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.51$ | $M=0.56\phantom{\rule{0ex}{0ex}}SD=0.51$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.52$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.63\phantom{\rule{0ex}{0ex}}SD=0.50$ |

200–204 | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.58$ | $M=0.75\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.75\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=1.00\phantom{\rule{0ex}{0ex}}SD=0.00$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.50\phantom{\rule{0ex}{0ex}}SD=0.58$ |

**Table A7.**The average rates of accurate distance estimates and their standard deviations, grouped by the number of hours per week the participants played video games.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

0 | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.31$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.41\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.24\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.29\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.53\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.48\phantom{\rule{0ex}{0ex}}SD=0.50$ |

1–2 | $M=0.05\phantom{\rule{0ex}{0ex}}SD=0.22$ | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.31$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.24\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.44$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

3–4 | $M=0.13\phantom{\rule{0ex}{0ex}}SD=0.34$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.58\phantom{\rule{0ex}{0ex}}SD=0.50$ |

5–10 | $M=0.12\phantom{\rule{0ex}{0ex}}SD=0.33$ | $M=0.22\phantom{\rule{0ex}{0ex}}SD=0.42$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.28\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.42\phantom{\rule{0ex}{0ex}}SD=0.50$ |

11–19 | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.30$ | $M=0.10\phantom{\rule{0ex}{0ex}}SD=0.30$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.37\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.30\phantom{\rule{0ex}{0ex}}SD=0.46$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.45\phantom{\rule{0ex}{0ex}}SD=0.50$ |

20+ | $M=0.07\phantom{\rule{0ex}{0ex}}SD=0.26$ | $M=0.17\phantom{\rule{0ex}{0ex}}SD=0.38$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.26\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.33\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Table A8.**The average rates of accurate distance estimates and their standard deviations, grouped by display device.

Factor | 25 cm | 40 cm | 55 cm | 70 cm | 85 cm | 100 cm | 115 cm | 130 cm | 145 cm | 160 cm |
---|---|---|---|---|---|---|---|---|---|---|

Desktop display | $M=0.08\phantom{\rule{0ex}{0ex}}SD=0.27$ | $M=0.17\phantom{\rule{0ex}{0ex}}SD=0.38$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.25\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.29\phantom{\rule{0ex}{0ex}}SD=0.45$ | $M=0.44\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.40\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.38\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.47\phantom{\rule{0ex}{0ex}}SD=0.50$ |

Gear VR | $M=0.14\phantom{\rule{0ex}{0ex}}SD=0.35$ | $M=0.27\phantom{\rule{0ex}{0ex}}SD=0.43$ | $M=0.39\phantom{\rule{0ex}{0ex}}SD=0.49$ | $M=0.31\phantom{\rule{0ex}{0ex}}SD=0.47$ | $M=0.36\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.49\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.35\phantom{\rule{0ex}{0ex}}SD=0.48$ | $M=0.43\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ | $M=0.46\phantom{\rule{0ex}{0ex}}SD=0.50$ |

**Figure A7.**Estimation times, grouped by the number of hours per week the participants played video games.

## References

- Miller, C.L. Enhancing Visual Literacy of Engineering Students through the Use of Real and Computer Generated Models. Eng. Des. Graph. J.
**1992**, 56, 27–38. [Google Scholar] - Miller, C.L.; Bertoline, G.R. Spatial Visualization Research and Theories: Their Importance in the Development of an Engineering and Technical Design Graphics Curriculum Model. Eng. Des. Graph. J.
**1991**, 55, 5–14. [Google Scholar] - Cao, C.G.L.; Zhou, M.; Jones, D.B.; Schwaitzberg, S.D. Can Surgeons Think and Operate with Haptics at the Same Time? J. Gastrointest. Surg.
**2007**, 11, 1564–1569. [Google Scholar] [CrossRef] - Loftin, R.B.; Scerbo, M.W.; McKenzie, F.D.; Catanzaro, J.M. Training in Peacekeeping Operations Using Virtual Environments. IEEE Comput. Graph. Appl.
**2004**, 24, 18–21. [Google Scholar] [CrossRef] - Bingham, G.P. Calibration of Distance and Size Does Not Calibrate Shape Information: Comparison of Dynamic Monocular and Static and Dynamic Binocular Vision. Ecol. Psychol.
**2005**, 17, 55–74. [Google Scholar] [CrossRef] - Mazyn, L.I.N.; Lenoir, M.; Montagne, G.; Delaey, C.; Savelsbergh, G.J.P. Stereo Vision Enhances the Learning of a Catching Skill. Exp. Brain Res.
**2007**, 179, 723–726. [Google Scholar] [CrossRef] [PubMed] - Jarraya, M.; Chtourou, H.; Megdich, K.; Chaouachi, A.; Souissi, N.; Chamari, K. Effect of a Moderate-Intensity Aerobic Exercise on Estimates of Egocentric Distance. Percept. Mot. Ski.
**2013**, 116, 658–670. [Google Scholar] [CrossRef] - Romeas, T.; Faubert, J. Assessment of Sport Specific and Nonspecific Biological Motion Perception in Soccer Athletes Shows a Fundamental Perceptual Ability Advantage over Non-Athletes for Reorganizing Body Kinematics. J. Vis.
**2015**, 15, 504. [Google Scholar] [CrossRef] - Hijazi, M.M.K. Attention, Visual Perception and Their Relationship to Sport Performance in Fencing. J. Hum. Kinet.
**2013**, 39, 195–201. [Google Scholar] [CrossRef] - Wu, S.; Spence, I. Playing Shooter and Driving Videogames Improves Top-down Guidance in Visual Search. Atten. Percept. Psychophys.
**2013**, 75, 673–686. [Google Scholar] [CrossRef] - Latham, A.J.; Patston, L.L.M.; Tippett, L.J. The Virtual Brain: 30 Years of Video-Game Play and Cognitive Abilities. Front. Psychol.
**2013**, 4, 629. [Google Scholar] [CrossRef] [PubMed] - Korecko, S.; Hudak, M.; Sobota, B.; Marko, M.; Cimrova, B.; Farkas, I.; Rosipal, R. Assessment and Training of Visuospatial Cognitive Functions in Virtual Reality: Proposal and Perspective. In Proceedings of the 2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; IEEE: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Mohler, B.J.; Creem-Regehr, S.H.; Thompson, W.B. The Influence of Feedback on Egocentric Distance Judgments in Real and Virtual Environments. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, Boston, MA, USA, 28–29 July 2006; ACM: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Kövecses-Gősi, V. Cooperative Learning in VR Environment. Acta Polytech. Hung.
**2018**, 15, 205–224. [Google Scholar] [CrossRef] - Capanema, I.F.; Santos Garcia, F.L.; Tissiani, G. Implications of Virtual Reality in Education. In Virtual Reality in Education: Online Survey; 2001; Available online: http://www.informatik.umu.se/~dfallman/projects/vrie (accessed on 11 May 2023).
- Katona, J.; Ujbanyi, T.; Sziladi, G.; Kovari, A. Examine the Effect of Different Web-Based Media on Human Brain Waves. In Proceedings of the 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; IEEE: New York, NY, USA, 2017; pp. 000407–000412. [Google Scholar] [CrossRef]
- Sziladi, G.; Ujbanyi, T.; Katona, J.; Kovari, A. The Analysis of Hand Gesture Based Cursor Position Control during Solve an IT Related Task. In Proceedings of the 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; IEEE: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Katona, J. Clean and Dirty Code Comprehension by Eye-Tracking Based Evaluation Using GP3 Eye Tracker. Acta Polytech. Hung.
**2021**, 18, 79–99. [Google Scholar] [CrossRef] - Csapo, A.B.; Nagy, H.; Kristjansson, A.; Wersenyi, G. Evaluation of Human-Myo Gesture Control Capabilities in Continuous Search and Select Operations. In Proceedings of the 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Wroclaw, Poland, 16–18 October 2016; IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Katona, J. Measuring Cognition Load Using Eye-Tracking Parameters Based on Algorithm Description Tools. Sensors
**2022**, 22, 912. [Google Scholar] [CrossRef] - Katona, J.; Kovari, A.; Heldal, I.; Costescu, C.; Rosan, A.; Demeter, R.; Thill, S.; Stefanut, T. Using Eye-Tracking to Examine Query Syntax and Method Syntax Comprehension in LINQ. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Mariehamn, Finland, 23–25 September 2020; IEEE: New York, NY, USA, 2020; pp. 437–444. [Google Scholar] [CrossRef]
- Psotka, J. Immersive Training Systems: Virtual Reality and Education and Training. Instr. Sci.
**1995**, 23, 405–431. [Google Scholar] [CrossRef] - Falah, J.; Khan, S.; Alfalah, T.; Alfalah, S.F.M.; Chan, W.; Harrison, D.K.; Charissis, V. Virtual Reality Medical Training System for Anatomy Education. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Freina, L.; Ott, M. A Literature Review on Immersive Virtual Reality in Education: State of the Art and Perspectives. Int. Sci. Conf. Elearning Softw. Educ.
**2015**, 1, 10–18. [Google Scholar] - Lele, A. Virtual Reality and Its Military Utility. J. Ambient Intell. Humaniz. Comput.
**2013**, 4, 17–26. [Google Scholar] [CrossRef] - Seymour, N.E.; Gallagher, A.G.; Roman, S.A.; O’Brien, M.K.; Bansal, V.K.; Andersen, D.K.; Satava, R.M. Virtual Reality Training Improves Operating Room Performance: Results of a Randomized, Double-Blinded Study. Ann. Surg.
**2002**, 236, 458–463. [Google Scholar] [CrossRef] [PubMed] - Ahlberg, G.; Enochsson, L.; Gallagher, A.G.; Hedman, L.; Hogman, C.; McClusky, D.A., 3rd; Ramel, S.; Smith, C.D.; Arvidsson, D. Proficiency-Based Virtual Reality Training Significantly Reduces the Error Rate for Residents during Their First 10 Laparoscopic Cholecystectomies. Am. J. Surg.
**2007**, 193, 797–804. [Google Scholar] [CrossRef] - Dugdale, J.; Pavard, B.; Pallamin, N.; El Jed, M.; Maugan, C.L. Emergency Fire Incident Training in a Virtual World. In Proceedings of the ISCRAM, Brussels, Belgium, 3–4 May 2004; Volume 167, pp. 167–172. [Google Scholar]
- Satava, R.M. Medical Applications of Virtual Reality. J. Med. Syst.
**1995**, 19, 275–280. [Google Scholar] [CrossRef] - Willem, I.M.; Willaert, R.; Aggarwal, I.; Van Herzeele, N.J.; Cheshire, F.E. Recent Advancements in Medical Simulation: Patient-Specific Virtual Reality Simulation. World J. Surg.
**2012**, 36, 1703–1712. [Google Scholar] - Lee, H.-S.; Lim, J.-H.; Jeon, B.-H.; Song, C.-S. Non-Immersive Virtual Reality Rehabilitation Applied to a Task-Oriented Approach for Stroke Patients: A Randomized Controlled Trial. Restor. Neurol. Neurosci.
**2020**, 38, 165–172. [Google Scholar] [CrossRef] - Bates, J. Virtual Reality, Art, and Entertainment. Presence
**1992**, 1, 133–138. [Google Scholar] [CrossRef] - Zyda, M. From Visual Simulation to Virtual Reality to Games. Computer
**2005**, 38, 25–32. [Google Scholar] [CrossRef] - Kortum, P. HCI Beyond the GUI: Design for Haptic, Speech, Olfactory, and Other Nontraditional Interfaces; Morgan Kaufmann: Oxford, UK, 2008; ISBN 9780123740175. [Google Scholar]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology, 2nd ed.; John Wiley & Sons: Nashville, TN, USA, 2003; ISBN 9780471360896. [Google Scholar]
- Schroeder, R.; Heldal, I.; Tromp, J. The Usability of Collaborative Virtual Environments and Methods for the Analysis of Interaction. Presence
**2006**, 15, 655–667. [Google Scholar] [CrossRef] - Kovari, A. CogInfoCom Supported Education: A Review of CogInfoCom Based Conference Papers. In Proceedings of the 2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; IEEE: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Horvath, I. Innovative Engineering Education in the Cooperative VR Environment. In Proceedings of the 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Wroclaw, Poland, 16–18 October 2016; IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Sutcliffe, A.G.; Poullis, C.; Gregoriades, A.; Katsouri, I.; Tzanavari, A.; Herakleous, K. Reflecting on the Design Process for Virtual Reality Applications. Int. J. Hum. Comput. Interact.
**2019**, 35, 168–179. [Google Scholar] [CrossRef] - Drettakis, G.; Roussou, M.; Reche, A.; Tsingos, N. Design and Evaluation of a Real-World Virtual Environment for Architecture and Urban Planning. Presence
**2007**, 16, 318–332. [Google Scholar] [CrossRef] - Baranyi, P.; Csapo, A.; Sallai, G. Cognitive Infocommunications (CogInfoCom); Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Katona, J. A Review of Human–Computer Interaction and Virtual Reality Research Fields in Cognitive InfoCommunications. Appl. Sci.
**2021**, 11, 2646. [Google Scholar] [CrossRef] - Willemsen, P.; Gooch, A.A. Perceived Egocentric Distances in Real, Image-Based, and Traditional Virtual Environments. In Proceedings of the IEEE Virtual Reality, Orlando, FL, USA, 24–28 March 2002; IEEE Computer Society: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Kenyon, R.V.; Phenany, M.; Sandin, D.; Defanti, T. Accommodation and Size-Constancy of Virtual Objects. Ann. Biomed. Eng.
**2008**, 36, 342–348. [Google Scholar] [CrossRef] - Cutting, J.E.; Vishton, P.M. Perceiving Layout and Knowing Distances. In Perception of Space and Motion; Elsevier: Amsterdam, The Netherlands, 1995; pp. 69–117. ISBN 9780122405303. [Google Scholar] [CrossRef]
- Renner, R.S.; Velichkovsky, B.M.; Helmert, J.R. The Perception of Egocentric Distances in Virtual Environments—A Review. ACM Comput. Surv.
**2013**, 46, 1–40. [Google Scholar] [CrossRef] - Luo, X.; Kenyon, R.V.; Kamper, D.G.; Sandin, D.J.; DeFanti, T.A. On the Determinants of Size-Constancy in a Virtual Environment. Int. J. Virtual Real.
**2009**, 8, 43–51. [Google Scholar] [CrossRef] - Naceri, A.; Chellali, R.; Hoinville, T. Depth perception within peripersonal space using head-mounted display. Presence
**2011**, 20, 254–272. [Google Scholar] [CrossRef] - Murgia, A.; Sharkey, P.M. Estimation of Distances in Virtual Environments Using Size Constancy. Int. J. Virtual Real.
**2009**, 8, 67–74. [Google Scholar] [CrossRef] - Ries, B.; Interrante, V.; Kaeding, M.; Phillips, L. Analyzing the Effect of a Virtual Avatar’s Geometric and Motion Fidelity on Ego-Centric Spatial Perception in Immersive Virtual Environments. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, Kyoto, Japan, 18–20 November 2009; ACM: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Thomas, G.; Goldberg, J.H.; Cannon, D.J.; Hillis, S.L. Surface Textures Improve the Robustness of Stereoscopic Depth Cues. Hum. Factors
**2002**, 44, 157–170. [Google Scholar] [CrossRef] - Lappin, J.S.; Shelton, A.L.; Rieser, J.J. Environmental Context Influences Visually Perceived Distance. Percept. Psychophys.
**2006**, 68, 571–581. [Google Scholar] [CrossRef] - Vaziri, K.; Liu, P.; Aseeri, S.; Interrante, V. Impact of Visual and Experiential Realism on Distance Perception in VR Using a Custom Video See-through System. In Proceedings of the ACM Symposium on Applied Perception, Cottbus, Germany, 16–17 September 2017; ACM: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Kunz, B.R.; Wouters, L.; Smith, D.; Thompson, W.B.; Creem-Regehr, S.H. Revisiting the Effect of Quality of Graphics on Distance Judgments in Virtual Environments: A Comparison of Verbal Reports and Blind Walking. Atten. Percept. Psychophys.
**2009**, 71, 1284–1293. [Google Scholar] [CrossRef] [PubMed] - Mohler, B.J.; Creem-Regehr, S.H.; Thompson, W.B.; Bülthoff, H.H. The Effect of Viewing a Self-Avatar on Distance Judgments in an HMD-Based Virtual Environment. Presence
**2010**, 19, 230–242. [Google Scholar] [CrossRef] - Landy, M.S.; Maloney, L.T.; Johnston, E.B.; Young, M. Measurement and Modeling of Depth Cue Combination: In Defense of Weak Fusion. Vision Res.
**1995**, 35, 389–412. [Google Scholar] [CrossRef] [PubMed] - Tai, N.-C. Daylighting and Its Impact on Depth Perception in a Daylit Space. J. Light Vis. Environ.
**2012**, 36, 16–22. [Google Scholar] [CrossRef] - Wu, B.; Ooi, T.L.; He, Z.J. Perceiving Distance Accurately by a Directional Process of Integrating Ground Information. Nature
**2004**, 428, 73–77. [Google Scholar] [CrossRef] - Sinai, M.J.; Ooi, T.L.; He, Z.J. Terrain Influences the Accurate Judgement of Distance. Nature
**1998**, 395, 497–500. [Google Scholar] [CrossRef] [PubMed] - Mohler, B.J.; Bülthoff, H.H.; Thompson, W.B.; Creem-Regehr, S.H. A Full-Body Avatar Improves Egocentric Distance Judgments in an Immersive Virtual Environment. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, CA, USA, 9–10 August 2008; ACM: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Bingham, G.P.; Zaal, F.; Robin, D.; Shull, J.A. Distortions in Definite Distance and Shape Perception as Measured by Reaching without and with Haptic Feedback. J. Exp. Psychol. Hum. Percept. Perform.
**2000**, 26, 1436–1460. [Google Scholar] [CrossRef] [PubMed] - Armbrüster, C.; Wolter, M.; Kuhlen, T.; Spijkers, W.; Fimm, B. Depth Perception in Virtual Reality: Distance Estimations in Peri- and Extrapersonal Space. Cyberpsychol. Behav.
**2008**, 11, 9–15. [Google Scholar] [CrossRef] - Rolland, J.P.; Gibson, W.; Ariely, D. Towards Quantifying Depth and Size Perception in Virtual Environments. Presence
**1995**, 4, 24–49. [Google Scholar] [CrossRef] - Viguier, A.; Clément, G.; Trotter, Y. Distance Perception within near Visual Space. Perception
**2001**, 30, 115–124. [Google Scholar] [CrossRef] - Leyrer, M.; Linkenauger, S.A.; Bülthoff, H.H.; Kloos, U.; Mohler, B. The Influence of Eye Height and Avatars on Egocentric Distance Estimates in Immersive Virtual Environments. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, Toulouse, France, 27–28 August 2011; ACM: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Plumert, J.M.; Kearney, J.K.; Cremer, J.F.; Recker, K. Distance Perception in Real and Virtual Environments. ACM Trans. Appl. Percept.
**2005**, 2, 216–233. [Google Scholar] [CrossRef] - Bian, Z.; Andersen, G.J. Aging and the Perception of Egocentric Distance. Psychol. Aging
**2013**, 28, 813–825. [Google Scholar] [CrossRef] - Creem-Regehr, S.H.; Willemsen, P.; Gooch, A.A.; Thompson, W.B. The Influence of Restricted Viewing Conditions on Egocentric Distance Perception: Implications for Real and Virtual Indoor Environments. Perception
**2005**, 34, 191–204. [Google Scholar] [CrossRef] - Interrante, V.; Ries, B.; Anderson, L. Distance Perception in Immersive Virtual Environments, Revisited. In Proceedings of the IEEE Virtual Reality Conference (VR 2006), Alexandria, VA, USA, 25–29 March 2006; IEEE: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Naceri, A.; Chellali, R. The Effect of Isolated Disparity on Depth Perception in Real and Virtual Environments. In Proceedings of the 2012 IEEE Virtual Reality (VR), Costa Mesa, CA, USA, 4–8 March 2012; IEEE: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Foreman, N.; Sandamas, G.; Newson, D. Distance Underestimation in Virtual Space Is Sensitive to Gender but Not Activity-Passivity or Mode of Interaction. Cyberpsychol. Behav.
**2004**, 7, 451–457. [Google Scholar] [CrossRef] - Coelho, H.; Melo, M.; Branco, F.; Vasconcelos-Raposo, J.; Bessa, M. The Impact of Gender, Avatar and Height in Distance Perception in Virtual Environments. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 696–705. ISBN 9783030161835. [Google Scholar] [CrossRef]
- David, W.; Hosmer, S.; Lemeshow, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]

**Figure 1.**Different perspectives of two tests: (

**a**) a round without a scale as seen in the Unity editor; (

**b**) a round with a scale as seen in the Unity editor; (

**c**) a round without a scale as seen from the perspective of participants; and (

**d**) a round with a scale as seen from the perspective of participants.

**Figure 3.**The 95% CIs of the estimated significant coefficients when pairs of factors were analyzed.

**Figure 4.**The 95% CIs of the estimated significant coefficients when triplets of factors were analyzed. These triplets consisted of gender, gaming hours per week, and display device.

**Figure 5.**The 95% CIs of the estimated significant coefficients when triplets of factors were analyzed. These triplets consisted of gender, previous VR experience, and display device.

**Figure 6.**The 95% CIs of the estimated significant coefficients when triplets of factors were analyzed. These triplets consisted of gaming hours per week, previous VR experience, and display device.

**Figure 7.**The 95% CIs of each investigated significant factor regarding the effects on distance estimation time.

**Figure 8.**The 95% CIs of each investigated significant pair of factors regarding the effects on distance estimation time. They are graphically split into (

**a**,

**b**) for better readability.

**Figure 9.**The 95% CIs of each investigated significant triplet of factors regarding the effects on distance estimation time. They are graphically split into (

**a**–

**c**) for better readability.

**Figure 10.**The 95% CIs of each investigated significant quartet of factors regarding the effects on distance estimation time. They are graphically split into (

**a**–

**d**) for better readability.

**Figure 11.**The 95% CIs of each investigated significant quintet of factors regarding the effects on distance estimation time. They are graphically split into (

**a**,

**b**) for better readability.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Guzsvinecz, T.; Perge, E.; Szűcs, J.
Analyzing Accurate Egocentric Distance Estimates of University Students in Virtual Environments with a Desktop Display and Gear VR Display. *Electronics* **2023**, *12*, 2253.
https://doi.org/10.3390/electronics12102253

**AMA Style**

Guzsvinecz T, Perge E, Szűcs J.
Analyzing Accurate Egocentric Distance Estimates of University Students in Virtual Environments with a Desktop Display and Gear VR Display. *Electronics*. 2023; 12(10):2253.
https://doi.org/10.3390/electronics12102253

**Chicago/Turabian Style**

Guzsvinecz, Tibor, Erika Perge, and Judit Szűcs.
2023. "Analyzing Accurate Egocentric Distance Estimates of University Students in Virtual Environments with a Desktop Display and Gear VR Display" *Electronics* 12, no. 10: 2253.
https://doi.org/10.3390/electronics12102253