An Off-Nominal Class E Amplifier—Design Oriented Analysis
Abstract
:1. Introduction
2. Circuit Analysis
- (1)
- Transistor T is an ideal switch operating at the constant frequency f with zero switching times and normalized on-duty ratio D = 0.5;
- (2)
- All reactive components are linear and lossless, and choke LCH inductance is large enough to neglect its ac component;
- (3)
- The equation iO(ωt) = IO·sin(ωt + φ) is a sinusoidal output current with amplitude IO and phase φ;
- (4)
- At the switch turn-on instant the switch voltage vS(ωt = 2π) = 0 and its derivative is negative dvS(ωt = 2π)/dωt ≤ 0.
- xSRoff—normalised resultant reactance of the LSR–CSR branch at the operating frequency f for the off-nominal amplifier;
- Rnomr—total load resistance of the reference nominal amplifier;
- rO—total normalised load resistance Roff for the off-nominal amplifier;
- pO—normalised dc supply power for the amplifier (pO∈<0;1>, and for {pO = 1, rO = 1}-the amplifier operates in the nominal mode);
- PSUPoff, PSUPnom—dc supply power of the off-nominal and nominal Class E amplifiers, respectively.
3. Analysis for Specific Conditions
3.1. Equal dc Supply Voltages ESUPoff = ESUPnom
3.2. Equal dc Supply Voltages ESUPoff = ESUPnom and Equal dc Supply Power PSUPoff = PSUPnom
3.3. Equal dc Supply Power PSUPoff = PSUPnom and Equal Load Resistance Roff = Rnom
4. Design Examples, Simulations and Experimental Verification
4.1. Design Example I
4.2. Design Example II
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsai, K.-C.; Gray, P.R. A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications. IEEE J. SolidState Circuits 1999, 34, 962–970. [Google Scholar] [CrossRef]
- Kunihiro, K.; Hori, S.; Kaneko, T. High Efficiency Power Amplifiers for Mobile Base Stations: Recent Trends and Future Prospects for 5G. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2018, 101, 374–384. [Google Scholar] [CrossRef]
- Sajedin, M.; Elfergani, I.T.E.; Rodrigez, J.; Abd-Alhamed, R.; Barciela, M.F. A servey on RF and microwave Doherty power amplifier for mobile handset applications. MDPI Electron. 2019, 8, 717. [Google Scholar] [CrossRef]
- Kazimierczuk, M.K.; Czarkowski, D. Resonant Power Converters; Wiley: New York, NY, USA, 1995; pp. 347–378. [Google Scholar]
- De Mulder, E.; Aerts, W.; Preneel, B.; Verbauwhede, I.; Vandenbosch, G. Case study: A Class E power amplifier for ISO-14443A. In Proceedings of the 12th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, Liberec, Czech Republic, 15–17 April 2009. [Google Scholar] [CrossRef]
- Stoecklin, S.; Volk, T.; Yousaf, A.; Reindl, L. A programmable and self-adjusting Class E amplifier for efficient wireless powering of biomedical implants. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Alghrairi, M.K.; Sulaiman, N.B.; Sidek, R.B.; Mutashar, M.S. Unique Micro System Stimulator with High Data Rate and Efficient Power Recovery Circuit. Prz. Elektrotechniczny 2016, 92, 213–220. [Google Scholar] [CrossRef]
- Wen, F.; Cheng, X.; Li, Q.; Ye, J. Wireless charging system using resonant inductor in Class E power amplifier for electronics and sensors. MDPI Sens. 2020, 20, 2801. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martınez, J.A.; Pena-Eguiluz, R.; Lopez-Callejas, R.; Mercado-Cabrera, A.; Alvarado, R.V.; Barocio, S.R.; de la Piedad-Beneitez, A. Power Supply for Plasma Torches Based on a Class-E Amplifier Configuration. Plasma Process. Polym. 2008, 5, 593–598. [Google Scholar] [CrossRef]
- Moore, J.; Castellanos, S.; Xu, S.; Wood, B.; Ren, H.; Ho Tse, Z.T. Applications of Wireless Power Transfer in Medicine: State-of-the-Art Reviews. Ann. Biomed. Eng. 2019, 47, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Basar, R.; Ahmad, M.Y.; Cho, J.; Ibrahim, F. Application of Wireless Power Transmission Systems in Wireless Capsule Endoscopy: An Overview. Sensors 2014, 14, 10929–10951. [Google Scholar] [CrossRef] [PubMed]
- Suetsugu, T.; Kazimierczuk, M.K. Design procedure of class-E amplifier for off-nominal operation at 50% duty ratio. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 1468–1476. [Google Scholar] [CrossRef]
- Suetsugu, T.; Kazimierczuk, M.K. Off-nominal operation of class-E amplifier at any duty ratio. IEEE Trans. Circuits Syst. IReg. Pap. 2007, 54, 1389–1397. [Google Scholar] [CrossRef]
- Acar, M.; Annema, A.J.; Nauta, B. Generalized analytical design equations for variable slope Class-E power amplifier. In Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems, Nice, France, 10–13 December 2016; pp. 431–434. [Google Scholar] [CrossRef]
- Raab, F.H.; Sokal, N.O. Transistor power losses in the Class E tuned power amplifier. IEEE J. Solid-State Circuits 1978, 13, 912–914. [Google Scholar] [CrossRef]
- Raab, F.H. Idealized operation of the Class E tuned power amplifier. IEEE Trans. Circuits Syst. 1977, 24, 725–735. [Google Scholar] [CrossRef]
- Mikolajewski, M. A Class E ZVS amplifier with basic matching circuits. In Proceedings of the 2020 Baltic URSI Symposium (URSI), Warsaw, Poland, 5–8 October 2020. [Google Scholar] [CrossRef]
- Mediano, A.; Molina, P. Frequency limitation of a high-efficiency class E tuned RF power amplifier due to a shunt capacitance. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 13–19 June 1999; pp. 363–366. [Google Scholar]
- Nagashima, T.; Wei, X.; Sekiya, H.; Kazimierczuk, M.K. Power conversion efficiency of Class-E power amplifier outside nominal operations. In Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 749–752. [Google Scholar] [CrossRef]
- Mikolajewski, M. Output Voltage Control in the Class E ZVS Inverter by Frequency or Reactance Regulation. Prz. Elektrotechniczny 2020, 96, 8–15. [Google Scholar] [CrossRef]
- Mikolajewski, M.; Kazubski, W. A resonant Class E amplifier for low resistance load. In Proceedings of the Baltic URSI Symposium (URSI), Warsaw, Poland, 5–8 October 2020. [Google Scholar] [CrossRef]
- Suetsugu, T.; Kazimierczuk, M.K. Comparison of Class-E amplifier with nonlinear and linear shunt capacitance. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2023, 50, 1089–1097. [Google Scholar] [CrossRef]
- Mediano, A.; Molina-Gaudo, P.; Bernal, C. Design of Class E amplifier with nonlinear and linear shunt capacitances for any duty cycle. IEEE Trans. Microw. Theory Tech. 2007, 55, 484–492. [Google Scholar] [CrossRef]
Design Example I Specification: ESUPoff = 24 V, PSUPoff = 30 W, foff = 13.56 MHz, QSRnomr = 10, rDSon = 16 mΩ, ωtf = 0.05 | |||
---|---|---|---|
Parameter | Calculated CT = 0 | Simulation with Ideal Switch CT = 0 | Simulation with EPC2016 CT = 340 pF |
C1ext = (C1−CT) [pF] | 556 | 556 | 216 |
Switch Losses PToff = PCondoff + PSWoff | 0.112 | 0.100 (PSWoff = 0) | 0.120 |
Output Power PO [W] | 30 | 31.56 | 33.56 |
Switch Peak Voltage VSMAXoff [V] | 76.86 | 81.2 | 89.8 |
Drain Efficiency ηDoffPE | 0.996 | 0.997 | 0.996 |
LCH [μH] | >2 | 5 | 10 |
Parameter | Value | Equations Used to Find the Parameter |
---|---|---|
Rnomr [Ω] | 3.876 | (9) |
C1 [pF] | 556 | (12) |
LSR [μH] | 0.4549 | (10) |
xSroff | 2.211 | (1) |
rO | 0.9319 | (2) |
Roff [Ω] | 3.612 | (5) |
CSR [pF] | 388.7 | (11) |
LCH [μH] | >2 | (13) |
rDsonmax [mΩ] | 46.2 | (6), (37) |
PCondoff [W] | 0.104 | (20) |
PSwoff [mW] | 8.1 | (21) |
ηDoffPE | 0.996 | (32) |
VSMAXoff [V] | 76.86 | (14), (15), (18) |
ISMAXoff [A] | 5.326 | (19) |
Parameter | Value | Equations Used to Find the Parameter |
---|---|---|
pO | 0.3551 | (8) |
Rnomr [Ω] | 2.242 | (9) |
C1 [nF] | 93.11 | (12) |
LSR [μH] | 20.39 | (10) |
xSRoff | 2.199 | (1) |
rO | 0.9389 | (2) |
CSR [nF] | 87.41 | (11) |
LCH [μH] | >112 | (13) |
rDSonmax [mΩ] | 26.7 | (41) |
PCondoff [W] | 0.237 | (38) |
PSWoff [mW] | 10.96 | (39) |
ηDoffPR | 0.996 | (40) |
VSMAXoff [V] | 76.9 | (14), (15), (18) |
ISMAXoff [A] | 9.265 | (19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolajewski, M. An Off-Nominal Class E Amplifier—Design Oriented Analysis. Electronics 2023, 12, 2203. https://doi.org/10.3390/electronics12102203
Mikolajewski M. An Off-Nominal Class E Amplifier—Design Oriented Analysis. Electronics. 2023; 12(10):2203. https://doi.org/10.3390/electronics12102203
Chicago/Turabian StyleMikolajewski, Miroslaw. 2023. "An Off-Nominal Class E Amplifier—Design Oriented Analysis" Electronics 12, no. 10: 2203. https://doi.org/10.3390/electronics12102203
APA StyleMikolajewski, M. (2023). An Off-Nominal Class E Amplifier—Design Oriented Analysis. Electronics, 12(10), 2203. https://doi.org/10.3390/electronics12102203