An Adaptive Output Feedback Controller for Boost Converter
Abstract
:1. Introduction
- Inspired by the result [25], a saturated PI passivity-based controller (PI-PBC) is applied to stabilize the boost converter with the support of experiment validation. Note that an appropriate monotone transformation is introduced to address the saturation problem of the control input.
- Following the work [26], a reduced-order parameter estimation-based observer (PEBO) is devised to estimate the inductor current and load conductance.
- The simulation and experiment results are given to assess the performance of the proposed adaptive output feedback controller.
2. System Model and Problem Formation
2.1. The Model
2.2. Problem Formation
- F1.
- The real information of the current and load conductance can be reconstructed via the designed observer. That is,
- F2.
- The control input is ensured to satisfy the set , in which the saturation problem is addressed. Under the saturation constraint, the closed-loop system is asymptotically stable. That is,
3. Adaptive Output Feedback Controller Design
3.1. Saturated Controller Design
3.2. Reduced-Order Adaptive State Observer Design
3.3. Adaptive Output Feedback Control Design
4. Simulation Results
5. Experiment Results
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.; Rahim, N. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renew. Sustain. Energy Rev. 2018, 81, 205–230. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Zeb, K.; Muthusamy, A.; Krishna, T.; Kumar, S.; Kim, D.H.; Kim, M.S.; Cho, H.G.; Kim, H.J. A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Namazi, M.M.; Li, T.; Ortega, R. A state observer for sensorless control of power converters with unknown load conductance. IEEE Trans. Power Electron. 2022. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, A. Active disturbance rejection control of DC–DC boost converter: A review with modifications for improved performance. IET Power Electron. 2019, 12, 2095–2107. [Google Scholar] [CrossRef]
- Reddy, D.S. Review on power electronic boost converters. Aust. J. Electr. Electron. Eng. 2021, 18, 127–137. [Google Scholar] [CrossRef]
- Santi, E.; Monti, A.; Li, D.; Proddutur, K.; Dougal, R.A. Synergetic control for DC-DC boost converter: Implementation options. IEEE Trans. Ind. Appl. 2003, 39, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Leon-Masich, A.; Valderrama-Blavi, H.; Bosque-Moncusí, J.M.; Maixe-Altes, J.; Martínez-Salamero, L. Sliding-mode-control-based boost converter for high-voltage–low-power applications. IEEE Trans. Ind. Electron. 2014, 62, 229–237. [Google Scholar] [CrossRef]
- Oucheriah, S.; Guo, L. PWM-based adaptive sliding-mode control for boost DC–DC converters. IEEE Trans. Ind. Electron. 2012, 60, 3291–3294. [Google Scholar] [CrossRef]
- Tong, Q.; Zhang, Q.; Min, R.; Zou, X.; Liu, Z.; Chen, Z. Sensorless predictive peak current control for boost converter using comprehensive compensation strategy. IEEE Trans. Ind. Electron. 2013, 61, 2754–2766. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Fan, J.; Li, Q. Nonlinear disturbance observer based sliding mode control for PWM-based DC-DC boost converter systems. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 2479–2484. [Google Scholar]
- Sira-Ramirez, H.J.; Silva-Ortigoza, R. Control Design Techniques in Power Electronics Devices; Springer Science & Business: London, UK, 2006. [Google Scholar]
- Chincholkar, S.; Jiang, W.; Chan, C.Y.; Rangarajan, S. A Simplified Output Feedback Controller for the DC-DC Boost Power Converter. Electronics 2021, 10, 493. [Google Scholar] [CrossRef]
- Sira-Ramírez, H.; Oliver-Salazar, M.A.; Leyva-Ramos, J. Voltage regulation of a fuel cell-boost converter system: A proportional integral exact tracking error dynamics passive output feedback control approach. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 2153–2158. [Google Scholar]
- Chan, C.Y. Simplified parallel-damped passivity-based controllers for dc–dc power converters. Automatica 2008, 44, 2977–2980. [Google Scholar] [CrossRef]
- Son, Y.I.; Kim, I.H. Complementary PID controller to passivity-based nonlinear control of boost converters with inductor resistance. IEEE Trans. Control. Syst. Technol. 2011, 20, 826–834. [Google Scholar] [CrossRef]
- Rodriguez, H.; Ortega, R.; Escobar, G.; Barabanov, N. A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Syst. Control. Lett. 2000, 40, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Su, X.; Shi, P. Output Feedback Sliding Mode Control of Markovian Jump Systems and Its Application to Switched Boost Converter. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 5134–5144. [Google Scholar] [CrossRef]
- Ma, G.; Qin, L.; Liu, X.; Wu, G. Event-triggered output-feedback control for switched linear systems with applications to a boost converter. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 2431–2436. [Google Scholar]
- Kim, S.K.; Kim, J.S.; Park, C.R.; Lee, Y.I. Output-feedback model predictive controller for voltage regulation of a DC/DC converter. IET Control. Theory Appl. 2013, 7, 1959–1968. [Google Scholar] [CrossRef]
- Salhi, B.; El Fadil, H.; Ahmed Ali, T.; Magarotto, E.; Giri, F. Adaptive output feedback control of interleaved parallel boost converters associated with fuel cell. Electr. Power Components Syst. 2015, 43, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, A.; Alawieh, A.; Ortega, R.; Godoy, E.; Lefranc, P. PI stabilization of power converters with partial state measurements. IEEE Trans. Control. Syst. Technol. 2012, 21, 560–568. [Google Scholar] [CrossRef]
- Tavan, M.; Sabahi, K.; Hajizadeh, A.; Soltani, M.N.; Jessen, K. Overcoming the Detectability Obstacle in Adaptive Output Feedback Control of DC-DC Boost Converter With Unknown Load. IEEE Trans. Control. Syst. Technol. 2020, 29, 2678–2686. [Google Scholar] [CrossRef]
- Zhang, X.; Martinez-Lopez, M.; He, W.; Shang, Y.; Jiang, C.; Moreno-Valenzuela, J. Sensorless Control for DC–DC Boost Converter via Generalized Parameter Estimation-Based Observer. Appl. Sci. 2021, 11, 7761. [Google Scholar] [CrossRef]
- Ortega, R.; Romero, J.G.; Borja, P.; Donaire, A. PID Passivity-Based Control of Nonlinear Systems with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Zonetti, D.; Bergna-Diaz, G.; Ortega, R.; Monshizadeh, N. PID passivity-based control of power converters: Large-signal stability, robustness and performance. arXiv 2021, arXiv:2101.05047. [Google Scholar] [CrossRef]
- Ortega, R.; Bobtsov, A.; Pyrkin, A.; Aranovskiy, S. A parameter estimation approach to state observation of nonlinear systems. Syst. Control. Lett. 2015, 85, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Middlebrook, R.D.; Cuk, S. A general unified approach to modelling switching-converter power stages. In Proceedings of the 1976 IEEE Power Electronics Specialists Conference, Cleveland, OH, USA, 8–10 June 1976; pp. 18–34. [Google Scholar]
- Middlebrook, R.D.; Cuk, S. A general unified approach to modelling switching-converter power stages. Int. J. Electron. Theor. Exp. 1977, 42, 521–550. [Google Scholar] [CrossRef]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer Science & Business: Cham, Germany, 2007. [Google Scholar]
- Sepulchre, R.; Jankovic, M.; Kokotovic, P.V. Constructive Nonlinear Control; Springer Science & Business: London, UK, 2012. [Google Scholar]
Parameter | Symbol (Unit) | Value |
---|---|---|
Input voltage | 6 | |
Reference output voltage | 12 | |
Gain | 2 | |
Parasitic resistance | ||
Conductance | ||
Inductance | 28 | |
Capacitance | 830 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; He, W.; Zhang, Y. An Adaptive Output Feedback Controller for Boost Converter. Electronics 2022, 11, 905. https://doi.org/10.3390/electronics11060905
Zhang X, He W, Zhang Y. An Adaptive Output Feedback Controller for Boost Converter. Electronics. 2022; 11(6):905. https://doi.org/10.3390/electronics11060905
Chicago/Turabian StyleZhang, Xiaoyu, Wei He, and Yanqin Zhang. 2022. "An Adaptive Output Feedback Controller for Boost Converter" Electronics 11, no. 6: 905. https://doi.org/10.3390/electronics11060905
APA StyleZhang, X., He, W., & Zhang, Y. (2022). An Adaptive Output Feedback Controller for Boost Converter. Electronics, 11(6), 905. https://doi.org/10.3390/electronics11060905