Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods
Abstract
1. Introduction
2. Source of Halal Cosmetic Ingredients
2.1. Halal (Permitted) Cosmetic Ingredients
2.2. Haram (Prohibited) Cosmetic Ingredients
2.3. Critical Cosmetic Ingredients
2.4. General Guidelines for Halal and Non-Halal Cosmetic Ingredients
3. Production of Halal Cosmetics
Manufacturing, Storing, Packaging, and Distribution
4. Testing Methods for Halal Cosmetics
4.1. Water Penetration through Applied Nail Polish or Hard-to-Wash Cosmetics
4.2. Determining Permeation of Alcohol, and Solvent/Cosmetic Actives of Critical Origin
4.3. Cosmetics “Washability” Quantification
5. Detection of Haram Ingredients in Cosmetics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hashim, P.; Mat Hashim, D. A review of cosmetic and personal care products: Halal perspective and detection of ingredient. Pertanika J. Sci. Technol. 2013, 21, 281–292. [Google Scholar]
- Hassan, N.; Ahmad, T.; Zain, N.M. Chemical and chemometric methods for halal authentication of gelatin: an overview. J. Food Sci. 2018, 83, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Trent, N. Halal Cosmetics Market 2018-Industry Analysis, Share, Growth, Sales, Trends, Supply, Forecast to 2025. Reuters. Available online: https://www.reuters.com/brandfeatures/venture-capital/article?id=52417 (accessed on 10 March 2019).
- Yusuf, E.; Yajid, M.S.A. Related topic: Halal Cosmetics. In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds; Sugibayashi, K., Ed.; Springer: Tokyo, Japan, 2017; pp. 101–107. [Google Scholar]
- Briliana, V.; Mursito, N. Exploring antecedents and consequences of Indonesian Muslim youths’ attitude towards halal cosmetic products: A case study in Jakarta. Asia Pac. Manag. Rev. 2017, 22, 176–184. [Google Scholar] [CrossRef]
- Houlis, A. Halal Cosmetics: Control of Ingredients. Available online: https://www.sigmaaldrich.com/technical-documents/articles/white-papers/flavors-and-fragrances/halal-ingredients-sources-cosmetics.html (accessed on 2 February 2019).
- Iwata, H.; Shimada, K. Developing the formulations of cosmetics. In Formulas, Ingredients and Production of Cosmetics: Technology of Skin-and Hair-care Products in Japan; Iwata, H., Shimada, K., Eds.; Springer: Tokyo, Japan, 2013; pp. 21–86. [Google Scholar]
- Dent, M.; Amaral, R.T.; Silva, P.A.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
- Li, Y.; Dong, C.; Cun, D.; Liu, J.; Xiang, R.; Fang, L. Lamellar liquid crystal improves the skin retention of 3-O-ethyl-ascorbic acid and potassium 4-methoxysalicylate in vitro and in vivo for topical preparation. AAPS PharmSciTech 2016, 17, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Wakamatsu, K. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J. Dermatol. Sci. 2015, 80, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ivica, C.; Litvić, M. Simple and efficient synthesis of arbutin. Arkivoc 2008, 2, 19–24. [Google Scholar]
- Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 1996, 276, 765–769. [Google Scholar]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.) 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Chien, C.W.; Teng, Y.H.G.; Honda, T.; Ojima, I. Synthesis of colchicinoids and allocolchicinoids through Rh(I)-Catalyzed [2+2+2+1] and [2+2+2] Cycloadditions of o-Phenylenetriynes with and without CO. J. Org. Chem. 2018, 83, 11623–11644. [Google Scholar] [CrossRef]
- Kadokawa, J.; Nishikura, T.; Muraoka, R.; Tagaya, H.; Fukuoka, N. Synthesis of Kojic Acid Derivatives Containing Phenolic Hydroxy Groups. Synth. Commun. Int. J. Rapid Commun. Synth. Org. Chem. 2003, 33, 1081–1086. [Google Scholar]
- Liu, X.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J. Agric. Food Chem. 2014, 62, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Guiso, M.; Marra, C.; Farina, A. A new efficient resveratrol synthesis. Tetrahedron Lett. 2002, 43, 597–598. [Google Scholar] [CrossRef]
- Li, Z.; Fang, L.; Dong, L.; Guo, Y.; Xie, Y. An improved and practical synthesis of tranexamic acid. Org. Process. Res. Dev. 2015, 19, 444–448. [Google Scholar] [CrossRef]
- Everts, S. Green chemistry environmentally friendly synthesis of niacin generates less inorganic waste. Chem. Eng. News 2008, 86, 15. [Google Scholar] [CrossRef]
- Linster, C.L.; Van Schaftingen, E.; Vitamin, C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef]
- Yamano, Y.; Ito, M. Total synthesis of capsanthin and capsorubin using Lewsi acid-promoting regio-and stereoselective rearrangement of tetrasubstituted epoxides. Org. Biomol. Chem. 2007, 5, 3207–3212. [Google Scholar] [CrossRef]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Megson, I.L. Bioavailable concentrations of delphindin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid. Med. Cell Longev. 2017, 2017, 9260701. [Google Scholar] [CrossRef]
- Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym. J. 2013, 49, 1185–1195. [Google Scholar] [CrossRef]
- Xiong, P.; Wang, R.; Zhang, X.; Dela Torre, E.; Leon, F.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Design, synthesis, and evaluation of genistein analogues as anti-cancer agents. Anticancer. Agents Med. Chem. 2015, 15, 1197–1203. [Google Scholar] [CrossRef]
- Brieskorn, C.H.; Sax, H. Synthesis of glycyrrhizin and glycyrrhetin acid derivatives. Pharm. Ges. 1970, 303, 905–912. [Google Scholar]
- Kim, J.; Della Penna, D. Defining primary route for lutein synthesis in plants: The role of Arabidopsis carotenoid B-ring hydroxylase CYP97A3. Proc. Natl. Acad. Sci. USA 2006, 103, 3474–3479. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.W.; Zhang, W.; Xu, R.; Gao, F.; Liu, Y.F.; Li, Y.J. Synthesis, crystal structure, and biological evaluation of a series of phloretin derivatives. Molecules 2014, 19, 16447–16457. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, Y.; Zheng, C.; Meng, Y.; Yang, Y. Synthesis, biological activity of salidroside and its analogues. Chem. Pharm. Bull. 2010, 58, 1627–1629. [Google Scholar] [CrossRef]
- Schalk, M.; Pastore, L.; Mirata, M.A.; Khim, S.; Schouwey, M.; Dequerry, F.; Pineda, V.; Rocci, L.; Daviet, L. Towards biosynthetic route to sclareol and amber odorants. J. Am. Chem. Soc. 2012, 134, 18900–18903. [Google Scholar] [CrossRef] [PubMed]
- Barrero, A.F.; Siméon, A.; del Moral, J.F.Q.; Herrador, M.M.; Valdivia, M.; Jimenez, D. First synthesis of the antifungal oidiolactone C from trans-commumnic acid: Cytotoxic and antimicrobial activity in podolactone-related compounds. J. Org. Chem. 2002, 67, 2501–2508. [Google Scholar] [CrossRef] [PubMed]
- Maimba, O. Umbelliferone: Synthesis, chemistry and bioactivities review. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 223–232. [Google Scholar] [CrossRef]
- Shui, T.; Feng, S.; Chen, G.; Li, An.; Yuan, Z.; Shui, H.; Kuboki, T.; Xu, C. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractioned from cornstalk. Biomass Bioenergy 2017, 105, 51–58. [Google Scholar] [CrossRef]
- Yu, X.; Wang, N.; Zhang, R.; Zhao, Z. Simple synthesis hydrogenated castor oil fatty amide wax and its coating characterization. J. Oleo Sci. 2017, 66, 659–665. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef]
- Battarjee, S.M.; Abd El-Azim, W.M.; Mohamed, A.A. Preparation of medicinal petroleum jelly using local petroleum waxes. Lubr. Sci. 1999, 12, 89–104. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural colorants: Historical, processing, and sustainable prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhong, J. A review of extraction techniques for avocado oil. J. Oleo Sci. 2016, 65, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Costagli, G.; Betti, M. Avocado oil extraction processes: Method for cold-pressed high quality edible oil production versus traditional production. J. Agric. Eng. 2015, 46, 115–122. [Google Scholar] [CrossRef]
- Ni, S.; Zhao, W.; Zhang, Y.; Gasmalla, M.A.A.; Yang, R. Efficient and eco-friendly extraction of corngerm oil using aqueous ethanol solution assisted by steam explosion. J. Food Sci. Technol. 2016, 53, 2018–2116. [Google Scholar] [CrossRef] [PubMed]
- Meshram, P.D.; Puri, R.V.; Patil, A.L.; Gite, V.K. Synthesis and characterization of modified cottonseed oil based polyesteramide for coating applications. Prog. Org. Coat. 2013, 76, 1144–1150. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Xiao, F.; Wei, W.; Sun, Y. One-pot synthesis of propylene glycol and dipropylene glycol over strong basic catalyst. Catal. Commun. 2010, 11, 675–678. [Google Scholar] [CrossRef]
- Sandha, G.K.; Swami, V.K. Jojoba oil as an organic, shelf stable standard oil-phase base for cosmetic industry. Rasayan J. Chem. 2009, 2, 300–306. [Google Scholar]
- Klaus, E.E.; Tewksbury, E.J.; Fenske, M.R. Preparation, properties and some applications of super-refined mineral oils. ASLE Trans. 1962, 5, 115–125. [Google Scholar] [CrossRef]
- Morrison, D.S.; Schmidt, J.; Paulli, R. The scope of mineral oil in personal care products and its role in cosmetic formulation. J. Appl. Cosmetol. 1996, 14, 111–118. [Google Scholar]
- Li, J.; Kao, W.J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated–peptide biopolymer conjugates. Biomacromolecules 2003, 4, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Cheng, L.; Zhang, R.; Bi, J. Extraction of safflower seed oil by supercritical CO2. J. Food Eng. 2000, 92, 370–376. [Google Scholar] [CrossRef]
- Corso, M.P.; Fagundes–Klen, M.R.; Silva, E.A.; Filho, L.C.; Santos, J.N.; Freitas, L.S.; Dariva, C. Extraction of sesame seed (Sesamim indicum L.) oil using compressed propane and supercritical carbon dioxide. J. Supercrit Fluid 2010, 52, 56–61. [Google Scholar] [CrossRef]
- Prohibited and Restricted Chemicals in Cosmetics. Available online: https://www.fda.gov/Cosmetics/GuidanceRegulation/LawsRegulations/ucm127406.htm (accessed on 1 February 2019).
- Hepburn, H.R. Composition and Synthesis of Beeswax. In Honeybees and Wax; Springer: Berlin/Heidelberg, Germany, 1986; pp. 44–56. [Google Scholar]
- Kim, T.; Kim, S.; Kang, W.Y.; Baek, H.; Jeon, H.Y.; Kim, B.Y.; Kim, C.G.; Kim, D. Porcine amniotic fluid as possible antiwrinkle cosmetic agent. Korean J. Chem. Eng. 2011, 28, 1839–1843. [Google Scholar] [CrossRef]
- Fatwa of Majelis Ulama Indonesia (MUI) No.: 11/2009. 18 November 2009. Available online: http://halalmui.org/images/stories/Fatwa/fatwa-alkohol.pdf (accessed on 10 January 2019).
- Cativiela, C.; Fraille, J.M.; Garcia, J.I.; Lázaro, B.; Mayoral, J.A.; Pallarés, A. Heterogeneous catalysis in the synthesis and reactivity of allantoin. Green Chem. 2003, 5, 275–277. [Google Scholar] [CrossRef]
- Babilas, P.; Knie, U.; Abels, C. Cosmetic and dermatologic use of alpha hydroxy acids. J. Ger. Soc. Dermatol. 2012, 10, 488–491. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Kumar, V.; Bhatia, S.K. Hydroxy acids: Production and applications. In Advances in Industrial Biotechnology; Singh, R.S., Pandey, A., Larroche, C., Eds.; IK International Publishing House PVT. Ltd.: New Delhi, India, 2013; pp. 56–76. [Google Scholar]
- Nazzaro-Porro, M. Azelaic acid. In Dermatology in Five Continents; Orfanos, C.E., Stadler, R., Gollnick, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 194–195. [Google Scholar]
- Zhang, P.; Tang, Y.; Li, N.G.; Zhu, Y.; Duan, J.A. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 2014, 19, 16458–16476. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb. Cell Fact. 2012, 11, 1–9. [Google Scholar] [CrossRef]
- Rodríguez, M.I.A.; Barroso, L.G.R.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2017, 17, 20–26. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef]
- Mokrejš, P.; Hutta, M.; Pavlačkova, J.; Egner, P. Preparation of keratin hydrosylate from chicken feathers and its application in cosmetics. J. Vis. Exp. 2017, 129, e56254. [Google Scholar]
- Rouse, J.G.; Dyke, M.E.V. A review of keratin-based niomaterials for biomedical applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Overview of skin whitening agents: Drugs and cosmetic products. Cosmetics 2016, 3, 27. [Google Scholar] [CrossRef]
- Shcagen, S.K. Topical peptide treatments with effective anti-aging results. Cosmetics 2017, 4, 16. [Google Scholar]
- Knott, A.; Achterberg, V.; Smuda, C.; Mielke, H.; Sperling, G.; Dunckelmann, K.; Vogelsang, A.; Krüger, A.; Schwengler, H.; Behtash, M.; et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 2015, 41, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Hojerová, J. Coenzyme Q10–its importance, properties and use in nutrition and cosmetics. Ceska Slov. Farm. 2000, 49, 119–123. [Google Scholar] [PubMed]
- Meessen, J. Urea synthesis. Chem. Ing. Tech. 2014, 86, 2180–2189. [Google Scholar] [CrossRef]
- Netscher, T. Synthesis of vitamin E. Vitam. Horm. 2007, 76, 155–202. [Google Scholar]
- Draget, K.I.; Haug, I.J.; Aasmund, S. Gel-Containing Topical Composition. U.S. Patent Application Publication No. 2009/0131541 A1, 11 May 2009. [Google Scholar]
- Alvarez, A.M.R.; Rodríguez, M.L.G. Lipids in pharmaceutical and cosmetic preparations. Grasas Aceites 2000, 51, 74–96. [Google Scholar]
- Lopes, B.D.; Lessa, V.L.; Silva, B.M.; La Cerda, L.G. Xanthan gum: Properties, production conditions, quality and economic perspective. J. Food Nutr. Res. 2015, 54, 185–194. [Google Scholar]
- Imanaka, H.; Ando, H.; Ryu, A.; Shigeta, Y.; Kishida, S.; Mori, A.; Makino, T. Liposomal linoleic acid is useful as a skin lightening agent. J. Soc. Cosmet. Chem. Jpn. 1999, 33, 277–282. [Google Scholar] [CrossRef]
- Nagai, J.; Block, K. Synthesis of oleic acid by Euglena gracilis. J. Biol. Chem. 1965, 240, 3702–3703. [Google Scholar] [PubMed]
- Abdul Rahman, M.B.A.; Yap, C.L.; Dzulkefly, K.; Abdul Rahman, R.N.Z.; Salleh, A.B.; Basri, M. Synthesis of palm kernel oil alkanolamide using lipase. J. Oleo Sci. 2003, 52, 65–72. [Google Scholar] [CrossRef][Green Version]
- Zhen, Z.; Xi, T.F.; Zheng, Y.F. Surface modification by natural biopolymer coatings on magnesium alloys for biomedical applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications Volume II; Sanarka Narayan, T.S.N., Park, I.S., Lee, M.H., Eds.; Woodhead Publishing: Boca Raton, FL, USA, 2015; pp. 301–333. [Google Scholar]
- Popa, O.; Bábeanu, N.E.; Popa, I.; Nita, S.; Dinu-Parvu, C.E. Methods for obtaining and determination of squalene from natural sources. BioMed Res. Int. 2015, 2015, 367202. [Google Scholar] [CrossRef] [PubMed]
- Youtz, M. Rapid preparation of cetyl alcohol. J. Am. Chem. Soc. 1925, 47, 2252–2254. [Google Scholar] [CrossRef]
- Guo, W.; Sheng, J.; Zhao, H.; Feng, X. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb. Cell Fact. 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, V.N.; Yilmaz, S. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Appl. Catal. A 2016, 522, 194–200. [Google Scholar] [CrossRef]
- Schlossman, M.L.; McCarthy, J.P. Lanolin and its Derivatives. J. Am. Oil Chem. Soc. 1977, 55, 447–450. [Google Scholar] [CrossRef]
- Alzeer, J.; Hadeed, K.A. Ethanol and its halal status in food industries. Trends Food Sci. Technol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- DFG, Deutsche Forschungsgemeinschaft. Glycerin. In The MAK–Collection Part. I: MAK Value Documentations; Wiley-VCH GmbH & Co.: KGaA, Weinheim, 2015; Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/3527600418.mb5681kske4215 (accessed on 1 January 2019).
- Seretis, A.; Tsiakaras, P. Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Process. Technol. 2016, 142, 135–146. [Google Scholar] [CrossRef]
- Rabello, C.R.K.; Gomes, M.J.; Siqueira, B.G.; De Menezes, R.B.; Huziwara, W.K.; Yamada, T.S.; De Oliveira, L.M.M.; Oliveira, G.C.; Candido, W.V.C. Production of Propylene Glycol from Glycerol. European Patent Application EP 2540692 A2, 2013. Available online: https://patentimages.storage.googleapis.com/df/69/ae/f723554e9b191e/EP2540692A2.pdf (accessed on 2 January 2019).
- International Organization for Standardization ISO. Cosmetics–Good Manufacturing Practices (GMP)–Guidelines on Good Manufacturing Practices; ISO 22716; ISO: Geneva, Switzerland, 2007; Available online: https://www.sis.se/api/document/preview/909264/ (accessed on 31 December 2018).
- Standard and Metrology Institute for Islamic Countries (SMIIC). Halal Cosmetics–General Requirements; OIC/SMIIC 4:2018; SMIIC: Bakırköy/İstanbul, Turkey, 2018. [Google Scholar]
- Gulf Cooperation Council Standardization Organization-Safety Requirements for Cosmetics and Personal Care Products. GSO 12/ DS 1943. 2015. Available online: http://www.puntofocal.gov.ar/notific_otros_miembros/yem3_t.pdf (accessed on 12 January 2019).
- General Guidelines of Halal Assurance System. LPPOM MUI, Majelis Ulama, Indonesia. 2012. Available online: https://www.halalcertifiering.se/newwebsiteimages/ebookhashaki.pdf (accessed on 10 December 2018).
- ASEAN Guidelines for Cosmetic Good Manufacturing Practice. Available online: https://ww2.fda.gov.ph/attachments/category/197/Appendix%20VI_CosmeticGMP.pdf (accessed on 2 February 2019).
- Department of Standards Malaysia, MS2200. Part I: Islamic Consumer Goods–Part 1: Cosmetics and Personal Care–General Guidelines, Standard Malaysia. 2008. Available online: https://law.resource.org/pub/my/ibr/ms.2200.1.e.2008.pdf (accessed on 8 December 2018).
- National Pharmaceutical Regulatory Division, Ministry of Health, Malaysia. Drug Registration Guidance Document, 2nd ed.2019. Available online: https://www.npra.gov.my/images/Guidelines_Central/guideline-DRGD/CompleteDRGDwithappendices.pdf (accessed on 2 February 2019).
- Guidance for Industry: Cosmetic Good Manufacturing Practices. U.S. Department of Health and Human Services. US FDA. 2013. Available online: https://www.fda.gov/media/86366/download (accessed on 11 January 2019).
- Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients. Guidance for Industry. International Council for Harmonization. 2016. Available online: https://www.fda.gov/media/71518/download (accessed on 10 January 2019).
- Department of Standards Malaysia, JSM 16/ISC/I-02R1. Halal Cosmetics-General Requirements. 2018. Available online: http://www.jsm.gov.my/documents/10180/2793318/JSM16-MS2200Halal+Cosmetics_21Mar2018.pdf/ca0cca15-c0e7-431e-ab60-debe532c2772 (accessed on 12 February 2019).
- Talib, M.S.A.; Johan, M.R.M. Issues in halal packaging: A conceptual paper. Int. Bus. Manag. 2012, 5, 94–98. [Google Scholar]
- Jung, E.C.; Maibach, H. Animal models for percutaneous absorption. In Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah., V.P., Ed.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 21–30. [Google Scholar]
- OECD. Organization for Economic Cooperation and Development; Guidance 428: Skin Absorption; OECD Press: Paris, France, 2004; p. 8. Available online: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecdtg428-508.pdf (accessed on 9 January 2019).
- OECD. Organization for Economic Cooperation and Development; Guidance Document for the Conduct of Skin Absorption Studies # 28; OECD Press: Paris, France, 2004; p. 14. Available online: https://www.oecd-ilibrary.org/docserver/9789264078796-en.pdf?expires=1559264519&id=id&accname=oid006932&checksum=650D34675626065E96BA28CE26628795 (accessed on 19 January 2019).
- OECD. Organization for Economic Cooperation and Development; Guidance Notes on Dermal Absorption; Series on Testing and Assessment # 156; OECD Press: Paris, France, 2011; p. 26. Available online: https://www.oecd.org/chemicalsafety/testing/48532204.pdf (accessed on 12 January 2019).
- SCCS/1416/11, 2012. The SCCS’s Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation, 9th Revision. Scientific Committee on Consumer Safety. 2016. Available online: http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf (accessed on 12 February 2019).
- SCCS/1358/10, 2010. Basic Criteria for the in Vitro Assessment of Dermal Absorption of Cosmetic Ingredients. Scientific Committee on Consumer Safety. 2010, p. 8. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_002.pdf (accessed on 13 January 2019).
- Todo, H. Transdermal permeation of drugs in various animal species. Pharmaceutics 2017, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 2015, 75, 10–24. [Google Scholar]
- Sixth Commission Directive 95/32/EC Relating to Methods of Analysis Necessary for Checking the Composition of Cosmetic Products. European Union. Official Journal of the European Communities. 1995. Available online: https://publications.europa.eu/en/publication-detail/-/publication/f03d7204-0256-44a5-92be-265a88274047/language-en (accessed on 31 December 2018).
- Cosmetics Analytical Methods-Validation Criteria for Analytical Results Using Chromatographic Techniques. ISO 1278. 2011. Available online: https://www.sis.se/api/document/preview/914189/ (accessed on 12 February 2019).
- Chisvert, A.; Salvador, A.; Benedé, J.L.; Miralles, P. Tanning and whitening agents in cosmetics: Regulatory aspects and analytical methods. In Analysis of Cosmetic Products, 2nd ed.; Salvador, A., Chisvert, A., Eds.; Elsevier Science: New York, NY, USA, 2017; pp. 107–121. [Google Scholar]
- Schlay, S.; Schacht, K.; Storzer, U. Breathable nail polish on the basis of a new blend: A complex of water-based polymer and functional vegan silk. SOFW J. 2017, 143, 56–60. [Google Scholar]
- Horita, D.; Todo, H.; Sugibayashi, K. Effect of ethanol pretreatment on skin permeation of drugs. Biol. Pharm. Bull. 2012, 35, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Sugibayashi, K.; Todo, H.; Oshizaka, T.; Owada, Y. Mathematical model to predict skin concentration of drugs: Toward utilization of silicone membrane to predict skin concentration of drugs as an animal testing alternative. Pharm. Res. 2010, 27, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gunt, H.; Kasting, G. Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur. J. Pharm. Sci. 2007, 32, 254–260. [Google Scholar] [CrossRef]
- Okumura, M.; Sugibayashi, K.; Ogawa, K.; Morimoto, Y. Skin permeability of water-soluble drugs. Chem. Pharm. Bull. 1989, 37, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Intarakumhaeng, R.; Wanasathop, A.; Li, K. Effects of solvents on skin absorption of nonvolatile lipophilic and polar solutes under finite dose conditions. Int. J. Pharm. 2018, 536, 405–413. [Google Scholar] [CrossRef]
- Chaudhuri, S.R.; Gajjar, R.; Krantz, W.; Kasting, G. Percutaneous absorption of volatile solvents following transient liquid exposure II. Ethanol. Chem. Eng. Sci. 2009, 64, 1665–1672. [Google Scholar] [CrossRef]
- Kurihara–Bergstrom, T.; Knutson, K.; DeNoble, L.J.; Goates, C.Y. Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin. Pharm. Res. 1990, 7, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Todo, H.; Akiyama, T.; Hirata-Koizumi, M.; Sugibayashi, K.; Ikarashi, Y.; Ono, A.; Hirose, A.; Yokohama, K. Risk assessment of skin lightening cosmetics containing hydroquinone. Regul. Toxicol. Pharmacol. 2016, 81, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Arce, F.V.; Asano, N.; Yamashita, K.; Oda, A.; Uchida, T.; Sano, T.; Todo, H.; Sugibayashi, K. Effect of layered application on the skin permeation of a cosmetic active component, rhododendrol. J. Toxicol. Sci. 2019, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Watkinson, A.C.; Hadgraft, J.; Lane, M.E. Oxybutynin permeation in skin: The influence of drug and solvent activity. Int. J. Pharm. 2010, 384, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, R.M.; Miller, M.A.; Kasting, G.B. Evaporation of volatile organic compounds from human skin in vitro. Ann. Occup. Hyg. 2013, 57, 853–865. [Google Scholar]
- Yamaguchi, M.; Araki, D.; Kanamori, T.; Okiyama, Y.; Seto, H.; Uda, M.; Usami, M.; Yamamoto, Y.; Masunaga, T.; Sasa, H. Actual consumption amount of personal care products reflecting Japanese cosmetic habits. J. Toxicol. Sci. 2017, 42, 797–814. [Google Scholar] [CrossRef]
- Ma, H.; Yu, M.; Tan, F.; Li, N. Improved percutaneous delivery of azelaic acid employing microemulsion as nanocarrier: Formulation optimization, in vitro and in vivo evaluation. RSC Adv. 2015, 5, 28985–28995. [Google Scholar] [CrossRef]
- Choi, Y.L.; Park, E.J.; Kim, E.; Na, D.H.; Shin, Y. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTS and palmitoyl-KTTS). Biomol. Ther. 2014, 22, 321–327. [Google Scholar]
- Schwarz, J.; Baisaeng, N.; Hoppel, M.; Löw, M. Ultra-small NLC for improved dermal delivery of coenzyme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Comiskey, D.; Api, A.M.; Baratt, C.; Daly, E.J.; Ellis, G.; McNamara, C.; O’Mahony, C.; Robinson, S.H.; Safford, B.; Smith, B.; et al. Novel database for exposure to fragrance ingredients in cosmetics and personal care products. Regul. Toxicol. Pharmacol. 2015, 72, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Klimová, Z.; Hojerová, J.; Beránková, M. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens–In vitro study mimicking real-life consumer habits. Food Chem. Toxicol. 2015, 83, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Saito, M.; Kadhum, W.R.; Todo, H.; Sugibayashi, K. Establishment of an evaluation method to detect drug disposition in hair follicles. Int. J. Pharm. 2018, 542, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Widyaninggar, A.; Triyana, K.; Rohman, A. Differentiation between porcine and bovine gelatin in capsule shells based on amino acid profiles and principal component analysis. Indones. J. Pharm. 2012, 23, 104–109. [Google Scholar]
- Rohman, A.; Che Man, Y.B. Analysis of pig derivatives for halal authentication studies. Food Rev. Int. 2012, 28, 97–112. [Google Scholar] [CrossRef]
- Nemati, M.; Oveisi, M.R.; Abdollahi, H.; Sabzevari, O. Differentiation of bovine and porcine gelatins using principal component analysis. J. Pharm. Biomed. Anal. 2004, 34, 485–492. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Wang, Q.; Chen, L.; Lei, J.; Luo, J.; Ma, G.; Su, Z. Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin. Food Hydrocoll. 2009, 23, 2001–2007. [Google Scholar] [CrossRef]
- Cheng, X.L.; Wei, F.; Xiao, X.Y.; Zhao, Y.Y.; Shi, Y.; Liu, W.; Zhang, P.; Ma, S.C.; Tian, S.S.; Lin, R.C. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. J. Pharm. Biomed. Anal. 2012, 62, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.T.; Kesmen, Z.; Baykal, B.; Sagdic, O.; Kulen, O.; Kacar, O.; Yetim, H.; Baykal, A.T. A novel method to differentiate bovine and porcine gelatins in food products: NanoUPLC-ESI-Q-TOF-MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chem. 2013, 141, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.M.; Zhang, L.J.; Tu, Z.C.; Zhang, L.Z.; Hu, Z.Z.; Li, Z.; Li, X.; Huang, T.; Wang, H.; Zhang, L.; et al. The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. LWT Food Sci. Technol. 2018, 89, 74–86. [Google Scholar] [CrossRef]
- Jumhawan, U.; Xing, J.; Zhan, Z. Detection and Differentiation of Bovine and Porcine Gelatins in Food and Pharmaceutical Products by LC/MS/MS Method. Shimadzu Application News No. AD-0164. 2017. Available online: https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/bovine-and-porcine-gelatins.pdf (accessed on 5 January 2019).
- Che Man, Y.B.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar] [CrossRef]
- Nikzad, J.; Shahhosseini, S.; Tabarzad, M.; Nafissi-Varcheh, N.; Torshabi, M. Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for halal authentication. DARU J. Pharm. Sci. 2017, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Motalib Hossain, M.A.; Nizar, N.N.A.; Eaqub Ali, M. Novel multiplex PCR-RFLP assay discriminates bovine, porcine and fish gelatin substitution in Asian pharmaceuticals capsule shell. Food Addit. Contam. Part A 2018, 35, 1662–1673. [Google Scholar] [CrossRef] [PubMed]
- Nur Azira, T.; Amin, I.; Che Man, Y.B. Differentiation of bovine and porcine gelatins in processed products via sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and principal component analysis (PCA) techniques. Int. Food Res. J. 2012, 19, 1175–1180. [Google Scholar]
- Hidaka, S.; Liu, S.Y. Effects of gelatins on calcium phosphate precipitation: A possible application for distinguishing bovine bone gelatin from porcine skin gelatin. J. Food Compos. Anal. 2003, 16, 477–483. [Google Scholar] [CrossRef]
Category | Examples | References |
---|---|---|
Skin whitening agents | 4-potassium methoxysalicylate (4-MSK) | [9,10] |
Arbutin | [11,12] | |
Ferulic acid | [13] | |
Hinokitol | [14] | |
Kojic acid | [15,16] | |
Resveratrol | [17] | |
Tranexamic acid | [18] | |
Vitamin B3 | [19] | |
Vitamin C | [20] | |
Anti-aging agents | Capsanthin | [21] |
Capsorubin | [21] | |
Delphinidin | [22] | |
Gallic acid | [23] | |
Genistein | [24] | |
Glycyrrhizin | [25] | |
Lutein | [26] | |
Phloretin | [27] | |
Salidroside | [28] | |
Sclareol | [29] | |
Trans-communic acid (TCA) | [30] | |
Umbelliferone | [31] | |
Vitamin B3 | [19] | |
Thickeners | Carboxymethyl cellulose | [32] |
Carnauba wax | [33] | |
Carrageenan | [34] | |
Petrolatum | [35] | |
Colorants | Carotene (red-orange) | [7,36] |
Lithospermum purple (violet) | [7,36] | |
Paprika (yellow, orange, red) | [7,36] | |
Safflower (yellow, red) | [7,36] | |
Turmeric (yellow) | [7,36] | |
Solvents | Avocado oil | [37,38] |
Corn oil | [39] | |
Cottonseed oil | [40] | |
Dipropylene glycol | [41] | |
Jojoba oil | [42] | |
Liquid paraffin (mineral oil) | [43,44] | |
Polyethylene glycol | [45] | |
Safflower oil | [46] | |
Sesame oil | [47] | |
Water | [4] |
Category | Examples | References |
---|---|---|
Restricted chemicals | Chlorofluorocarbon propellants | [48] |
Chloroform | [48] | |
Halogenated salicylanilides | [48] | |
Hexachlorophene | [48] | |
Mercury compounds | [48] | |
Methylene chloride | [48] | |
Prohibited cattle materials | [48] | |
Vinyl chloride | [48] | |
Zirconium-containing complexes | [48] | |
Insect derived | Carmine dye (Cochineal; E 120 or Natural Red 4) | [7,36] |
Crimson dye (from Kermes vermilio) | [7,36] | |
Laccaic acid | [7,36] | |
Beeswax | [49] | |
Human derived | Amniotic fluid | [4] |
Growth factors | [4] | |
Placenta | [4] | |
Porcine derived | Amniotic fluid | [4,50] |
Gelatin | [4] | |
Growth factors | [4,50] | |
Placenta | [4,50] |
Category | Ingredients | Comments | References |
---|---|---|---|
Actives | Allantoin | May be derived from unspecified animal urine | [52] |
Alpha hydroxy acids | May be derived from unspecified animals | [53,54] | |
Azelaic acid | May be derived from oleic acid of unspecified animal origin; haram if contaminated with Malassezia furfur | [55] | |
Caffeic acid | May be synthesized using microbes or obtained from bee propolis; Halal if plant-derived | [56,57] | |
Collagen | May be porcine-derived, human-derived; halal if marine-derived | [58] | |
Hyaluronic acid | May be derived from unspecified animal tissues | [59] | |
Keratin | May be derived from cashmere goat or sheep wool | [4,60,61] | |
Mequinol | May be synthesized using methanol | [62] | |
Oligopeptides | May be derived from unspecified microorganisms and animals | [63] | |
Ubiquinone (CoQ10) | May be derived from unspecified animals | [64,65] | |
Urea | May be derived from unspecified animals | [4,66] | |
Vitamin E | May be produced from non-halal processes (i.e., use of lipase or unspecified origin of precursor materials) | [67] | |
Thickeners | Gelatin | May be porcine-derived; halal if derived from fish | [68] |
Palmitic acid | May be derived from unspecified animals; halal if plant-derived | [69] | |
Xanthan gum | Haram if contaminated with fermenting bacterium; halal if uncontaminated and obtained from natural aerobic fermentation | [70] | |
Oils | Linoleic acid/Linolenic acid | May be derived from unspecified animals; halal if plant-derived | [71] |
Oleic acid | May be porcine-derived | [72] | |
Palm kernel oil | May be derived from unspecified animals | [73] | |
Stearic acid/stearyl alcohol | May be porcine-derived; halal if plant-derived | [74] | |
Squalane | May be derived from unspecified animals; halal if plant-derived | [75] | |
Waxes | Cetyl alcohol | May be derived from palmitic acid of unspecified animal origin | [76,77,78] |
Lanolin alcohol | May be derived from non-halal slaughtered animals; halal if obtained from living animals | [79] | |
Stearyl alcohol | May be derived from stearic acid of unspecified animal origin | [74] | |
Solvents | Ethanol | Must be from natural aerobic fermentation or synthetic ethanol; intended as preservative in cosmetic formulations | [51,80] |
Glycerin/glycerol | May be porcine-derived | [81] | |
Propylene glycol | May be derived from glycerol of unspecified animal origin | [82,83] |
Guidelines | Description | References |
---|---|---|
ISO 22716:2007 | Good Manufacturing Practices (GMP) Guidelines for Cosmetics | [84] |
OIC/SMIIC 4:2018 | Standard and Metrology Institute for the Islamic Countries—Halal Cosmetics Requirements | [85] |
GSO 2055-4:2014 | Gulf Cooperation Council Standardization Organization (GSO)—Requirements for Cosmetics and Personal Care | [86] |
LPPOM MUI: HAS23000:1 | MUI Halal Certification Requirements | [87] |
ASEAN Cosmetic Directives | Association for South East Asian Nations Guiding Document for Cosmetic Manufacturers and Consumers | [88] |
MS 2200-1:2008 | Islamic Consumer Goods Part 1: Cosmetic and Personal Care-General Guidelines | [89] |
NPRA Guidelines: 2017 | Guidelines for Control of Cosmetic Products in Malaysia | [90] |
U.S. FDA Guidance for Industry | Cosmetic Good Manufacturing Practices | [91] |
ICH Guidelines Q7: 2016 | International Council for Harmonization Guidelines on Good Manufacturing Practices | [92] |
a. Comprehensive document exhibiting halal assurance system |
b. Comprehensive material specification used in the production of halal cosmetics |
c. Comprehensive and valid halal certification of materials and facility |
d. Compliance of formulation ingredients and the list of halal materials |
e. Conformity between material purchasing document and the list of halal material |
f. Comprehensive document and conformity between production document and the list of halal materials |
g. Comprehensive document and conformity between warehousing/storage document and list of halal materials and products |
h. Traceability system |
Ingredients | Analytical technique | References |
---|---|---|
Azelaic acid | High-performance liquid chromatography (215 nm, acetonitrile:phosphate buffer; 25:75 (v/v)) | [120] |
Collagen, pentapeptide | Liquid chromatography–tandem mass spectroscopy (Pentafluoropropionic acid solution:acetonitrile; 87:13 (v/v)) | [121] |
Ethanol (14C-ethanol) | Liquid scintillation counting | [112] |
Glycerin (14C-glycerol) | Liquid scintillation counting | [111] |
Propylene glycol | Gas chromatography (helium as carrier gas) | [117] |
Ubiquinone (CoQ10) | UV-Vis spectroscopy (405 nm) | [122] |
Urea (14C-urea) | Liquid scintillation counting | [111] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugibayashi, K.; Yusuf, E.; Todo, H.; Dahlizar, S.; Sakdiset, P.; Arce, F.J.; See, G.L. Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics 2019, 6, 37. https://doi.org/10.3390/cosmetics6030037
Sugibayashi K, Yusuf E, Todo H, Dahlizar S, Sakdiset P, Arce FJ, See GL. Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics. 2019; 6(3):37. https://doi.org/10.3390/cosmetics6030037
Chicago/Turabian StyleSugibayashi, Kenji, Eddy Yusuf, Hiroaki Todo, Sabrina Dahlizar, Pajaree Sakdiset, Florencio Jr Arce, and Gerard Lee See. 2019. "Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods" Cosmetics 6, no. 3: 37. https://doi.org/10.3390/cosmetics6030037
APA StyleSugibayashi, K., Yusuf, E., Todo, H., Dahlizar, S., Sakdiset, P., Arce, F. J., & See, G. L. (2019). Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics, 6(3), 37. https://doi.org/10.3390/cosmetics6030037