Historical Analysis and Prediction of the Magnitude and Scale of Natural Disasters Globally
Abstract
:1. Introduction
- Determining the areas (countries, continents) most affected by the analysed phenomena;
- Calculating the impact on human life, based on the number of affected citizens;
- Predicting the future trends and the magnitude of natural disasters.
2. Methods
- Death toll: Minimum of 10 casualties.
- Affected individuals: At least 100 people affected, injured, or rendered homeless.
- International requisition: A nation’s proclamation of an emergency state and/or a solicitation for international assistance.
3. Results
3.1. Disasters by Continent
3.2. Disasters by Country
- —smallest expression of the characteristic for the primary field
- —largest expression of the characteristic for the primary field
- —division class
- —number of classes.
3.3. Trends and Perspectives
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gray, C.L.; Mueller, V. Natural disasters and population mobility in Bangladesh. Proc. Natl. Acad. Sci. USA 2012, 109, 6000–6005. [Google Scholar] [CrossRef]
- Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; Zahner, J.A. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef]
- Okazumi, T.; Nakasu, T. Lessons learned from two unprecedented disasters in 2011—Great East Japan Earthquake and Tsunami in Japan and Chao Phraya River flood in Thailand. Int. J. Disaster Risk Reduct. 2015, 13, 200–206. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 2002, 47, 107–124. [Google Scholar] [CrossRef]
- Van Aalst, M.K. The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5–18. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth-Sci. Rev. 2017, 166, 246–269. [Google Scholar] [CrossRef]
- Naulin, J.P.; Payrastre, O.; Gaume, E. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. J. Hydrol. 2013, 486, 88–99. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Natural Disasters Are Prejudiced against Disadvantaged and Vulnerable Populations: The Lack of Publicly Available Health-Related Data Hinders Research at the Cusp of the Global Climate Crisis. GeoHealth 2020, 4, e2019GH000219. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior. Risk Anal. 2012, 32, 1481–1495. [Google Scholar] [CrossRef]
- Welle, T.; Depietri, Y.; Angignard, M.; Birkmann, J.; Renaud, F.; Greiving, S. Vulnerability Assessment to Heat Waves, Floods, and Earthquakes Using the MOVE Framework: Test Case Cologne, Germany; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780124105485. [Google Scholar]
- Drabek, T.E.; McEntire, D.A. Emergent phenomena and the sociology of disaster: Lessons, trends and opportunities from the research literature. Disaster Prev. Manag. Int. J. 2003, 12, 97–112. [Google Scholar] [CrossRef]
- Adger, W.N. Social capital, collective action, and adaptation to climate change. Econ. Geogr. 2003, 79, 387–404. [Google Scholar] [CrossRef]
- Grothmann, T.; Reusswig, F. People at risk of flooding: Why some residents take precautionary action while others do not. Nat. Hazards 2006, 38, 101–120. [Google Scholar] [CrossRef]
- Kandelaki, N.; Iordanishvili, I.; Ujma, A.; Iremashvili, I.; Iordanishvili, K.; Kupreishvili, S.; Shurghaia, V.; Natroshvili, G. Impact of Natural Disasters on Water Resources in Georgia Caused by Global Warming. Arch. Hydroeng. Environ. Mech. 2019, 66, 15–26. [Google Scholar] [CrossRef]
- Rosselló, J.; Becken, S.; Santana-Gallego, M. The effects of natural disasters on international tourism: A global analysis. Tour. Manag. 2020, 79, 104080. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, M.; Toya, H. Do natural disasters promote long-run growth? Econ. Inq. 2002, 40, 664–687. [Google Scholar] [CrossRef]
- Schmidt-Thomé, P.; Greiving, S.; Kallio, H.; Fleischhauer, M.; Jarva, J. Economic risk maps of floods and earthquakes for European regions. Quat. Int. 2006, 150, 103–112. [Google Scholar] [CrossRef]
- Neumayer, E.; Barthel, F. Normalizing economic loss from natural disasters: A global analysis. Glob. Environ. Chang. 2011, 21, 13–24. [Google Scholar] [CrossRef]
- Abbas Khan, K.; Zaman, K.; Shoukry, A.M.; Sharkawy, A.; Gani, S.; Sasmoko; Ahmad, J.; Khan, A.; Hishan, S.S. Natural disasters and economic losses: Controlling external migration, energy and environmental resources, water demand, and financial development for global prosperity. Environ. Sci. Pollut. Res. 2019, 26, 14287–14299. [Google Scholar] [CrossRef] [PubMed]
- Nafzis, F. and Shahwar, K. Universal health coverage—There is more to it than meets the eye. J. Fam. Med. Prim. Care 2017, 6, 169–170. [Google Scholar] [CrossRef]
- Finnigan, G.A. The natural environment as a disaster hazard: The growing global health threat. Disaster Prev. Manag. Int. J. 2019, 28, 724–737. [Google Scholar] [CrossRef]
- Mishra, A.; Bruno, E.; Zilberman, D. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 2021, 754, 142210. [Google Scholar] [CrossRef] [PubMed]
- Chwedczuk, K.; Cienkosz, D.; Apollo, M.; Borowski, L.; Lewinska, P.; Guimarães Santos, C.A.; Eborka, K.; Kulshreshtha, S.; Romero-Andrade, R.; Sedeek, A.; et al. Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources. Geod. Vestn. 2022, 66, 49–59. [Google Scholar] [CrossRef]
- Banasik, P.; Borowski, Ł. Georeferencing the Cadastral Map of the Krakow Region. Cartogr. J. 2021, 58, 329–340. [Google Scholar] [CrossRef]
- Apollo, M.; Mostowska, J.; Maciuk, K.; Wengel, Y.; Jones, T.E.; Cheer, J.M. Peak-bagging and cartographic misrepresentations: A call to correction. Curr. Issues Tour. 2021, 24, 1970–1975. [Google Scholar] [CrossRef]
- Neumayer, E.; Plümper, T. The gendered nature of natural disasters: The impact of catastrophic events on the gender gap in life Expectancy, 1981–2002. Ann. Assoc. Am. Geogr. 2007, 97, 551–566. [Google Scholar] [CrossRef]
- Rosvold, E.L.; Buhaug, H. GDIS, a global dataset of geocoded disaster locations. Sci. Data 2021, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- SEDAC about Us|SEDAC. Available online: https://sedac.ciesin.columbia.edu/about (accessed on 13 July 2023).
- United Nations. World Population Prospects 2022. 2022. Available online: www.un.org/development/desa/pd/ (accessed on 13 July 2023).
- Central Intelligence Agency. The World Factbook; Central Intelligence Agency: Washington, DC, USA, 2023. Available online: https://www.cia.gov/the-world-factbook/ (accessed on 5 May 2023).
- Pieniążek, M.; Szejgiec, B.; Zych, M.; Ajdyn, A.; Nowakowska, G. Graficzna Prezentacja Danych Statystycznych. Report, Warsaw. 2014. Available online: https://stat.gov.pl/gfx/portalinformacyjny/userfiles/_public/wspolpraca_rozwojowa/graficzna_prezentacja_danych_stat.pdf (accessed on 1 August 2023).
- ColorBrewer: Color Advice for Maps. Available online: https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3 (accessed on 13 July 2023).
Continent | Population [million] | Area [million km2] | Total Number of Disasters |
---|---|---|---|
Africa | 837.5 | 30.4 | 1427 |
Asia | 3199.0 | 44.6 | 4427 |
Europe | 675.0 | 10.2 | 1143 |
North America | 400.5 | 24.2 | 1634 |
Oceania | 30.0 | 7.7 | 468 |
South America | 327.0 | 17.8 | 863 |
No. | Country | Quantities | % of Total | Events per Capita [mln] |
---|---|---|---|---|
1 | China | 808 | 8.11 | 1.75 |
2 | United States of America | 737 | 7.40 | 0.45 |
3 | India | 536 | 5.38 | 2.63 |
4 | Philippines | 480 | 4.82 | 0.24 |
5 | Indonesia | 425 | 4.27 | 0.64 |
6 | Bangladesh | 222 | 2.23 | 0.76 |
7 | Mexico | 209 | 2.10 | 0.61 |
8 | Japan | 207 | 2.08 | 0.61 |
9 | Iran | 183 | 1.84 | 0.48 |
10 | Brazil | 180 | 1.81 | 1.19 |
TOTAL | 3987 | 40.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buszta, J.; Wójcik, K.; Guimarães Santos, C.A.; Kozioł, K.; Maciuk, K. Historical Analysis and Prediction of the Magnitude and Scale of Natural Disasters Globally. Resources 2023, 12, 106. https://doi.org/10.3390/resources12090106
Buszta J, Wójcik K, Guimarães Santos CA, Kozioł K, Maciuk K. Historical Analysis and Prediction of the Magnitude and Scale of Natural Disasters Globally. Resources. 2023; 12(9):106. https://doi.org/10.3390/resources12090106
Chicago/Turabian StyleBuszta, Julia, Katarzyna Wójcik, Celso Augusto Guimarães Santos, Krystian Kozioł, and Kamil Maciuk. 2023. "Historical Analysis and Prediction of the Magnitude and Scale of Natural Disasters Globally" Resources 12, no. 9: 106. https://doi.org/10.3390/resources12090106