A PRISMA Systematic Review of Sexual Dysfunction and Probiotics with Pathophysiological Mechanisms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- What evidence exists from in vitro, in vivo, and clinical studies on the effects of probiotics on sexual dysfunction?
- How do probiotics influence key pathophysiological mechanisms underlying sexual dysfunction, including inflammation, oxidative stress, and hormonal imbalances?
2.1. Inclusion and Exclusion Criteria
2.2. Study Selection Process
2.3. Data Extraction and Synthesis
3. Results
3.1. Improvement in Sexual Function Scores
3.2. Impact on Hormonal Markers
3.3. Pregnancy and Reproductive Outcomes
4. Discussion
4.1. Probiotics and Sexual Function Enhancement
4.2. Hormonal Modulation Through Probiotic Use
4.3. Influence on Fertility and Reproductive Health
4.4. Limitations
5. Conclusions
- Probiotics enhance sexual function and satisfaction in Female Sexual Function Index scores.
- Probiotics improve hormonal balance, lowering LH/FSH and increasing testosterone.
- Probiotics enhance reproductive outcomes with respect to pregnancy rates and sperm quality.
- Probiotics are a promising adjunct for sexual dysfunction treatment.
- Future studies are needed to standardize protocols and explore long-term impacts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FSFI | Female Sexual Function Index |
BICI | Body Image Concern Inventory |
TC | Total cholesterol |
TG | Triglycerides |
HDL | High-Density Lipoprotein |
LDL | Low-Density Lipoprotein |
GC-MS | Gas Chromatography–Mass Spectrometry |
16S rRNA | 16S ribosomal RNA |
References
- Christmas, M.M.; Reed, S. Sexual Dysfunction After Menopause. Obstet. Gynecol. Clin. N. Am. 2024, 51, 341–364. [Google Scholar] [CrossRef]
- Sousa Rodrigues Guedes, T.; Barbosa Otoni Gonçalves Guedes, M.; De Castro Santana, R.; Costa Da Silva, J.F.; Almeida Gomes Dantas, A.; Ochandorena-Acha, M.; Terradas-Monllor, M.; Jerez-Roig, J.; Bezerra De Souza, D.L. Sexual Dysfunction in Women with Cancer: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2022, 19, 11921. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Female Sexual Dysfunction: ACOG Practice Bulletin Clinical Management Guidelines for Obstetrician–Gynecologists, Number 213. Obstet. Gynecol. 2019, 134, e1–e18. [Google Scholar] [CrossRef]
- Clayton, A.H.; Valladares Juarez, E.M. Female Sexual Dysfunction. Med. Clin. N. Am. 2019, 103, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Crespo, R.E.; Cordon-Galiano, B.H. Sexual Dysfunction Among Men Who Have Sex with Men: A Review Article. Curr. Urol. Rep. 2021, 22, 9. [Google Scholar] [CrossRef]
- Su, Q.; Long, Y.; Luo, Y.; Jiang, T.; Zheng, L.; Wang, K.; Tang, Q. Specific Gut Microbiota May Increase the Risk of Erectile Dysfunction: A Two-Sample Mendelian Randomization Study. Front. Endocrinol. 2023, 14, 1216746. [Google Scholar] [CrossRef] [PubMed]
- Giatti, S.; Diviccaro, S.; Cioffi, L.; Cosimo Melcangi, R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front. Neuroendocrinol. 2024, 72, 101114. [Google Scholar] [CrossRef]
- Cross, T.-W.L.; Kasahara, K.; Rey, F.E. Sexual Dimorphism of Cardiometabolic Dysfunction: Gut Microbiome in the Play? Mol. Metab. 2018, 15, 70–81. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Jiang, Y.; Zhang, Z.; Wang, H.; Liu, T.; Yang, Z.; Fu, G.; Chen, Y. Gut Microbiota Composition May Be an Indicator of Erectile Dysfunction. Microb. Biotechnol. 2024, 17, e14403. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Ikeda, T.; Nishida, A.; Yamano, M.; Kimura, I. Short-Chain Fatty Acid Receptors and Gut Microbiota as Therapeutic Targets in Metabolic, Immune, and Neurological Diseases. Pharmacol. Ther. 2022, 239, 108273. [Google Scholar] [CrossRef]
- Cussotto, S.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Front. Neuroendocrinol. 2018, 51, 80–101. [Google Scholar] [CrossRef]
- Brettle, H.; Tran, V.; Drummond, G.R.; Franks, A.E.; Petrovski, S.; Vinh, A.; Jelinic, M. Sex Hormones, Intestinal Inflammation, and the Gut Microbiome: Major Influencers of the Sexual Dimorphisms in Obesity. Front. Immunol. 2022, 13, 971048. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, J.; Zhou, Y.; Xiong, S.; Zhou, M.; Wu, L.; Liu, Q.; Chen, Z.; Jiang, H.; Yang, J.; et al. Gut Microbiota Affects the Estrus Return of Sows by Regulating the Metabolism of Sex Steroid Hormones. J. Anim. Sci. Biotechnol. 2023, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Hill, M.A.; Sowers, J.R. Vascular Endothelial Mineralocorticoid Receptors and Epithelial Sodium Channels in Metabolic Syndrome and Related Cardiovascular Disease. J. Mol. Endocrinol. 2023, 71, e230066. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef]
- Hashemi-Mohammadabad, N.; Taghavi, S.-A.; Lambert, N.; Moshtaghi, R.; Bazarganipour, F.; Sharifi, M. Adjuvant Administration of Probiotic Effects on Sexual Function in Depressant Women Undergoing SSRIs Treatment: A Double-Blinded Randomized Controlled Trial. BMC Psychiatry 2024, 24, 44. [Google Scholar] [CrossRef]
- Perez-Lloret, S.; Rey, M.V.; Pavy-Le Traon, A.; Rascol, O. Emerging Drugs for Autonomic Dysfunction in Parkinson’s Disease. Expert Opin. Emerg. Drugs 2013, 18, 39–53. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol. Clin. N. Am. 2017, 46, 77–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Hou, Y.; Zhang, X.; Yin, Z.; Cai, X.; Wei, W.; Wang, J.; He, D.; Wang, G.; et al. Bacteroides Species Differentially Modulate Depression-like Behavior via Gut-Brain Metabolic Signaling. Brain. Behav. Immun. 2022, 102, 11–22. [Google Scholar] [CrossRef]
- Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex Differences in the Psychopharmacological Treatment of Depression. Dialogues Clin. Neurosci. 2016, 18, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Thériault, R.-K.; Perreault, M.L. Hormonal Regulation of Circuit Function: Sex, Systems and Depression. Biol. Sex Differ. 2019, 10, 12. [Google Scholar] [CrossRef]
- Basnet, J.; Eissa, M.A.; Cardozo, L.L.Y.; Romero, D.G.; Rezq, S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. Gastrointest. Disord. Basel Switz. 2024, 6, 801–815. [Google Scholar] [CrossRef]
- Helli, B.; Kavianpour, M.; Ghaedi, E.; Dadfar, M.; Haghighian, H.K. Probiotic Effects on Sperm Parameters, Oxidative Stress Index, Inflammatory Factors and Sex Hormones in Infertile Men. Hum. Fertil. 2022, 25, 499–507. [Google Scholar] [CrossRef]
- American Urological Association Recurrent Uncomplicated Urinary Tract Infections in Women: AUA/CUA/SUFU Guideline. 2022. Available online: https://www.auanet.org/guidelines-and-quality/guidelines/recurrent-uti (accessed on 1 August 2024).
- Juliawan, I.M.P.; Suwana, F.P.; Annas, J.Y.; Akbar, M.F.; Widjiati, W. High Sucrose and Cholic Acid Diet Triggers PCOS-like Phenotype and Reduces Enterobacteriaceae Colonies in Female Wistar Rats. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2022, 29, 344–353. [Google Scholar] [CrossRef]
- Azizi-Kutenaee, M.; Heidari, S.; Taghavi, S.-A.; Bazarganipour, F. Probiotic Effects on Sexual Function in Women with Polycystic Ovary Syndrome: A Double Blinded Randomized Controlled Trial. BMC Women’s Health 2022, 22, 373. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.J.K.; Foster, J.A.; Soares, C.N.; Milev, R.V. The Effects of Probiotics on Symptoms of Depression: Protocol for a Double-Blind Randomized Placebo-Controlled Trial. Neuropsychobiology 2020, 79, 108–116. [Google Scholar] [CrossRef]
- Wallace, C.J.K.; Milev, R.V. The Efficacy, Safety, and Tolerability of Probiotics on Depression: Clinical Results From an Open-Label Pilot Study. Front. Psychiatry 2021, 12, 618279. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Chen, Y.; Zhu, X.; Wang, L.; Tian, P.; Jin, X.; Liang, M.; Chen, Z.; Zhang, T.; Qian, L.; et al. A Randomised Double-Blind Placebo-Controlled Trial of a Probiotic Combination for Manipulating the Gut Microbiota and Managing Metabolic Syndrome. Food Biosci. 2024, 59, 104076. [Google Scholar] [CrossRef]
- Lim, E.Y.; Lee, S.-Y.; Shin, H.S.; Lee, J.; Nam, Y.-D.; Lee, D.O.; Lee, J.Y.; Yeon, S.H.; Son, R.H.; Park, C.L.; et al. The Effect of Lactobacillus Acidophilus YT1 (MENOLACTO) on Improving Menopausal Symptoms: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. J. Clin. Med. 2020, 9, 2173. [Google Scholar] [CrossRef]
- Rapisarda, A.M.C.; Pino, A.; Grimaldi, R.L.; Caggia, C.; Randazzo, C.L.; Cianci, A. Lacticaseibacillus Rhamnosus CA15 (DSM 33960) Strain as a New Driver in Restoring the Normal Vaginal Microbiota: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Front. Surg. 2023, 9, 1075612. [Google Scholar] [CrossRef]
- Mr, O. Combination Local Therapy of Genitourinary Menopausal Syndrome Symptoms. World J. Gynecol. Women’s Health 2020, 3, 3–9. [Google Scholar] [CrossRef]
- Khodaverdi, S.; Mohammadbeigi, R.; Khaledi, M.; Mesdaghinia, L.; Sharifzadeh, F.; Nasiripour, S.; Gorginzadeh, M. Beneficial Effects of Oral Lactobacillus on Pain Severity in Women Suffering from Endometriosis: A Pilot Placebo-Controlled Randomized Clinical Trial. Int. J. Fertil. Steril. 2019, 13, 178. [Google Scholar] [CrossRef] [PubMed]
- Mollazadeh-Narestan, Z.; Yavarikia, P.; Homayouni-Rad, A.; Samadi Kafil, H.; Mohammad-Alizadeh-Charandabi, S.; Gholizadeh, P.; Mirghafourvand, M. Comparing the Effect of Probiotic and Fluconazole on Treatment and Recurrence of Vulvovaginal Candidiasis: A Triple-Blinded Randomized Controlled Trial. Probiotics Antimicrob. Proteins 2023, 15, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, B.; Abbasi, H.; Niroumand, H. Synbiotic (FamiLact) Administration in Idiopathic Male Infertility Enhances Sperm Quality, DNA Integrity, and Chromatin Status: A Triple-Blinded Randomized Clinical Trial. Int. J. Reprod. Biomed. IJRM 2021, 19, 235–244. [Google Scholar] [CrossRef]
- Ansari, Z.; Maleki, M.H.; Roohy, F.; Ebrahimi, Z.; Shams, M.; Mokaram, P.; Zamanzadeh, Z.; Hosseinzadeh, Z.; Koohpeyma, F.; Dastghaib, S. Protective Effects of Artichoke Extract and Bifidobacterium Longum on Male Infertility in Diabetic Rats. Biochem. Biophys. Rep. 2024, 40, 101834. [Google Scholar] [CrossRef]
- Samtiya, M.; Dhewa, T.; Puniya, A.K. Probiotic Mechanism to Modulate the Gut-Brain Axis (GBA). In Microbiome-Gut-Brain Axis; Sayyed, R.Z., Khan, M., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 237–259. ISBN 9789811616259. [Google Scholar]
- Jaggar, M.; Rea, K.; Spichak, S.; Dinan, T.G.; Cryan, J.F. You’ve Got Male: Sex and the Microbiota-Gut-Brain Axis across the Lifespan. Front. Neuroendocrinol. 2020, 56, 100815. [Google Scholar] [CrossRef]
- Shobeiri, P.; Kalantari, A.; Teixeira, A.L.; Rezaei, N. Shedding Light on Biological Sex Differences and Microbiota–Gut–Brain Axis: A Comprehensive Review of Its Roles in Neuropsychiatric Disorders. Biol. Sex Differ. 2022, 13, 12. [Google Scholar] [CrossRef]
- Qu, S.; Yu, Z.; Zhou, Y.; Wang, S.; Jia, M.; Chen, T.; Zhang, X. Gut Microbiota Modulates Neurotransmitter and Gut-Brain Signaling. Microbiol. Res. 2024, 287, 127858. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Baião, R.; Capitão, L.P.; Higgins, C.; Browning, M.; Harmer, C.J.; Burnet, P.W.J. Multispecies Probiotic Administration Reduces Emotional Salience and Improves Mood in Subjects with Moderate Depression: A Randomised, Double-Blind, Placebo-Controlled Study. Psychol. Med. 2023, 53, 3437–3447. [Google Scholar] [CrossRef] [PubMed]
- Reisman, Y. Sexual Consequences of Post-SSRI Syndrome. Sex. Med. Rev. 2017, 5, 429–433. [Google Scholar] [CrossRef]
- González, M.; Viáfara, G.; Caba, F.; Molina, E. Sexual Function, Menopause and Hormone Replacement Therapy (HRT). Maturitas 2004, 48, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.J.; Hawton, K. Psychological and Sexual Aspects of the Menopause and HRT. Baillieres Clin. Obstet. Gynaecol. 1996, 10, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Rayan, N.A.; Aow, J.; Lim, M.G.L.; Arcego, D.M.; Ryan, R.; Nourbakhsh, N.; de Lima, R.M.S.; Craig, K.; Zhang, T.Y.; Goh, Y.T.; et al. Shared and Unique Transcriptomic Signatures of Antidepressant and Probiotics Action in the Mammalian Brain. Mol. Psychiatry 2024, 29, 3653–3668. [Google Scholar] [CrossRef]
- Godzien, J.; Kalaska, B.; Rudzki, L.; Barbas-Bernardos, C.; Swieton, J.; Lopez-Gonzalvez, A.; Ostrowska, L.; Szulc, A.; Waszkiewicz, N.; Ciborowski, M.; et al. Probiotic Lactobacillus Plantarum 299v Supplementation in Patients with Major Depression in a Double-Blind, Randomized, Placebo-Controlled Trial: A Metabolomics Study. J. Affect. Disord. 2025, 368, 180–190. [Google Scholar] [CrossRef]
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v Decreases Kynurenine Concentration and Improves Cognitive Functions in Patients with Major Depression: A Double-Blind, Randomized, Placebo Controlled Study. Psychoneuroendocrinology 2019, 100, 213–222. [Google Scholar] [CrossRef]
- Forth, E.; Buehner, B.; Storer, A.; Sgarbossa, C.; Milev, R.; Chinna Meyyappan, A. Systematic Review of Probiotics as an Adjuvant Treatment for Psychiatric Disorders. Front. Behav. Neurosci. 2023, 17, 1111349. [Google Scholar] [CrossRef]
- Tyagi, P.; Tasleem, M.; Prakash, S.; Chouhan, G. Intermingling of Gut Microbiota with Brain: Exploring the Role of Probiotics in Battle against Depressive Disorders. Food Res. Int. Ott. Ont 2020, 137, 109489. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-Gut-Brain Axis and Its Therapeutic Applications in Neurodegenerative Diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Yu, Y.; Zhu, X.; Xie, H.; Wei, C.; Mei, C.; Shi, Y.; Zhou, N.; Qin, K.; et al. Lactobacillus Rhamnosus GG Ameliorates Osteoporosis in Ovariectomized Rats by Regulating the Th17/Treg Balance and Gut Microbiota Structure. Gut Microbes 2023, 15, 2190304. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.K. Hormone Replacement Therapy and Breast Cancer, Endometrial Cancer and Cardiovascular Disease: Risks and Benefits. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 1992, 42, 120–125. [Google Scholar]
- Hickey, M.; Elliott, J.; Davison, S.L. Hormone Replacement Therapy. BMJ 2012, 344, e763. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chassaing, B.; Tyagi, A.M.; Vaccaro, C.; Luo, T.; Adams, J.; Darby, T.M.; Weitzmann, M.N.; Mulle, J.G.; Gewirtz, A.T.; et al. Sex Steroid Deficiency-Associated Bone Loss Is Microbiota Dependent and Prevented by Probiotics. J. Clin. Investig. 2016, 126, 2049–2063. [Google Scholar] [CrossRef]
- Luo, M.; Chen, Y.; Pan, X.; Chen, H.; Fan, L.; Wen, Y.E. Coli Nissle 1917 Ameliorates Mitochondrial Injury of Granulosa Cells in Polycystic Ovary Syndrome through Promoting Gut Immune Factor IL-22 via Gut Microbiota and Microbial Metabolism. Front. Immunol. 2023, 14, 1137089. [Google Scholar] [CrossRef] [PubMed]
- Raff, H.; Hainsworth, K.R.; Woyach, V.L.; Weihrauch, D.; Wang, X.; Dean, C. Probiotic and High-Fat Diet: Effects on Pain Assessment, Body Composition, and Cytokines in Male and Female Adolescent and Adult Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, 327, R123–R132. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Jeong, J.-W.; Kim, J.-Y.; Shim, J.-J.; Lee, J.-H. Lactobacillus helveticus HY7801 Improves Premenstrual Syndrome Symptoms by Regulating Sex Hormones and Inflammatory Cytokines in a Mouse Model of Metoclopramide-Induced Hyperprolactinemia. Nutrients 2024, 16, 3889. [Google Scholar] [CrossRef]
- Lee, J.; Yang, W.; Hostetler, A.; Schultz, N.; Suckow, M.A.; Stewart, K.L.; Kim, D.D.; Kim, H.S. Characterization of the Anti-Inflammatory Lactobacillus Reuteri BM36301 and Its Probiotic Benefits on Aged Mice. BMC Microbiol 2016, 16, 69. [Google Scholar] [CrossRef]
- Aygun, H.; Akin, A.T.; Kızılaslan, N.; Sumbul, O.; Karabulut, D. Probiotic Supplementation Alleviates Absence Seizures and Anxiety- and Depression-like Behavior in WAG/Rij Rat by Increasing Neurotrophic Factors and Decreasing Proinflammatory Cytokines. Epilepsy Behav. 2022, 128, 108588. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Durand, H.; Cartier, C.; Chaumaz, G.; Eutamene, H.; Ferrier, L.; Houdeau, E.; Fioramonti, J.; Bueno, L.; Theodorou, V. Prevention of Gut Leakiness by a Probiotic Treatment Leads to Attenuated HPA Response to an Acute Psychological Stress in Rats. Psychoneuroendocrinology 2012, 37, 1885–1895. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Z.; Feng, P.; Ye, Z.; Li, R.; Liu, J.; Hu, J.; Kakade, A.; Liu, P.; Li, X. Lactobacillus Plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front. Cell. Infect. Microbiol. 2019, 9, 221. [Google Scholar] [CrossRef]
- Hashem, N.M.; Gonzalez-Bulnes, A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022, 14, 902. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Ali, S.A.; Behare, P.; Kaul, G. Dietary Intake of Probiotic Fermented Milk Benefits the Gut and Reproductive Health in Mice Fed with an Obesogenic Diet. Food Funct. 2022, 13, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zou, H.; Xu, H.; Cao, R.; Zhang, H.; Zhang, Y.; Zhao, J. The Potential Influence and Intervention Measures of Gut Microbiota on Sperm: It Is Time to Focus on Testis-Gut Microbiota Axis. Front. Microbiol. 2024, 15, 1478082. [Google Scholar] [CrossRef]
- Khan, A.; Kango, N.; Srivastava, R. Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix Japonica) Administered at the Onset of Pre-Puberty. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Liu, D.; Han, X.; Zou, W.; Yang, Z.; Peng, J.; Li, Y.; Liu, Y.; Jia, M.; Liu, W.; Li, H.; et al. Probiotics Combined with Metformin Improves Sperm Parameters in Obese Male Mice through Modulation of Intestinal Microbiota Equilibrium. Reprod. Sci. 2025, 32, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J. Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria as Probiotic: A Systematic Review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Martinez Guevara, D.; Vidal Cañas, S.; Palacios, I.; Gómez, A.; Estrada, M.; Gallego, J.; Liscano, Y. Effectiveness of Probiotics, Prebiotics, and Synbiotics in Managing Insulin Resistance and Hormonal Imbalance in Women with Polycystic Ovary Syndrome (PCOS): A Systematic Review of Randomized Clinical Trials. Nutrients 2024, 16, 3916. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Yang, T.-H.; Ou, Y.-C.; Lin, H. The Role of Probiotics in Women’s Health: An Update Narrative Review. Taiwan. J. Obstet. Gynecol. 2024, 63, 29–36. [Google Scholar] [CrossRef]
- Bodke, H.; Jogdand, S. Role of Probiotics in Human Health. Cureus 2022, 14, e31313. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, H.D.; Hunter, K.; Manurung, S.; Obis, D.; et al. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol. 2021, 29, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Category | Parameters Influenced |
---|---|
1. Neurological and functional improvements | ↑ FSFI scores |
↓ Vaginal dryness and menopausal symptoms | |
↑ Serotonin and dopamine signaling | |
↓ Depressive symptoms | |
2. Hormonal and endocrine modulation | ↑ Testosterone levels |
Improved LH/FSH balance | |
3. Reproductive and fertility outcomes category | ↑ Sperm motility, viability, and morphology |
↑ Pregnancy rates |
Author Study Type Country | Sample Size | Age | Study Design | Outcome Measures | Follow-Up | Finding |
---|---|---|---|---|---|---|
Kutenaee RCT Iran [27] | G-A (LactoFem + Retrozole, n = 20) G-B (Retrozole, n = 20) | Married woman: 18–38 y/o | G-A: one Lactofem capsule (including L. acidophilus, B. bifidus, L. rutri, and L. fermentum 2 × 109; capsule weight of 500 mg per bio-capsule) G-B: Letrozole alone. | Demographic data; pregnancy: biochemical pregnancy (β-hCG), clinical pregnancy (ultrasound); ovular follicles and endometrial thickness; menstrual history; hair loss; global acne rating scale; sexual function FSFI; body image; biochemical assessment: total testosterone (ng/mL) and LH/FSH concentrations | 2 months | FSFI: improvement in sexual function (significant enhancement in the Lactofem plus Letrozole group). BICI: decreased dissatisfaction with body image. US: changes in follicle size and endometrial thickness observed. Biochemical pregnancy rate: 10% (probiotics plus Letrozole group) vs. 0% (Letrozole alone group), p = 0.05. Clinical pregnancy rate: 10% (probiotics plus Letrozole group) vs. 0% (Letrozole alone group), p = 0.05. Body image score: improvement in the probiotics G-(30 (4.99) vs 40 (4.36); p < 0.01). |
Hashemi RCT Iran [17] | G-A: SSRI antidepressants and Lactofem (n = 58) G-B: SSRI antidepressants (n = 54) | 18–45 y/o | G-A: SSRI antidepressants and Lactofem (500 mg bio-capsule containing L. acidophilus, B. bifidum, L. rutri, and L. fermentum, 2 × 109 cfu/g) taken orally every day. G-B: SSRI antidepressants only. | Demographic data Sexual function FSFI Sexual satisfaction questionnaire Depressive severity Hamilton Depression Rating Scale Side effects: recorded symptoms included fever, itching, diarrhea, vomiting, or other gastrointestinal issues | 2 months | After 8 weeks, the Lactofem plus SSRIs G-showed significant improvements in FSFI domains and total scores compared to the SSRIs alone group (p < 0.05). |
Wallace RCT Canada [28,29] | n = 10 | 25.2 ± 7 y/o | Probio’Stick® group: 6 × 109 CFU daily. Placebo group: placebo sachet daily. | Depressive symptoms (MADRS); anxiety, sexual function, sleep quality, neuroimaging, and molecular analysis; polysomnography for sleep quality; molecular analysis: blood, urine, and stool samples for DNA, RNA, and microRNA sequencing; neuroimaging: MRI scan | Duration: 16 weeks in total (8 weeks divided into two stages) | Depression (MADRS): 24.9 ± 3.4 ⟶ 15.4 ± 4.4 (week 4, p < 0.001) ⟶ 12.7 ± 8.1 (p = 0.377). Depression (QIDS-SR16): 20.5 ± 6.4 ⟶ 14 ± 6.3 (week 4, p < 0.001) ⟶ 11.6 ± 8.1 (p = 0.126). Anhedonia (SHAPS): 36.8 ± 2 ⟶ 31.4 ± 4.6 (week 4, p = 0.004) ⟶ 30.7 ± 6.8 (p = 1.000). Anxiety (GAD-7): 13.5 ± 3.8 ⟶ 9.6 ± 4.9 (week 4, p = 0.021) ⟶ 9.8 ± 6.6 (p = 1.000). Anxiety (STAI): 123.3 ± 11.3 ⟶ 105.7 ± 21.5 (week 4, p = 0.016) ⟶ 104.3 ± 28.1 (p = 1.000). Sleep quality (PSQI): 9.8 ± 3.6 ⟶ 8.6 ± 2.9 (p = 0.167) ⟶ 6.6 ± 2.8 (week 8, p = 0.002). Safety: no side effects or adverse events. |
Xiao RCT China [30] | n = 12 | Metabolic syndrome (MetS) between 30 and 65 y/o | Probiotic group: two sachets of 1:1 mixture of B. adolescentis CCFM8630 and L. reuteri CCFM8631 (1 × 1010 CFU) daily. Placebo: maltodextrin. | BMI and waist circumference; hip circumference, waist-to-hip ratio, fasting blood glucose, fasting insulin, HbA1c, CRP, total cholesterol (TC), triglycerides (TG), HDL, and LDL; fecal analysis GC-MS and 16S rRNA gene amplicon sequencing | 11 weeks | B. adolescentis CCFM8630 and L. reuteri CCFM8631 show promising effects as an adjuvant therapy for metabolic syndrome, significantly reducing fasting blood glucose, fasting insulin, triglycerides, and LDL-C. The intervention also increased the proportion of bacteroides and levels of acetic acid, propionic acid, and butyric acid, as well as the abundance of phascolarctobacterium and lachnospira. |
Lim RCT Korea [31] | n = 85 (42 experimental, 43 control) | 45 and older with postmenopausal symptoms | Probiotic group: L. acidophilus YT1 MENOLACTO® (1 × 10⁸ CFU/day). Placebo group: an identical placebo. | MENQOL (Menopause-Related Quality of Life); KMI (Kupperman Menopausal Index): Evaluates menopausal symptoms such as hot flashes, insomnia, nervousness, and fatigue | 12 weeks with visits every 6 weeks | MENOLACTO® resulted in a 66% reduction in menopausal symptoms, compared to a 37% reduction in the placebo group. Unlike hormone replacement therapy (HRT), which alleviates symptoms but carries risks such as heart disease and stroke, MENOLACTO® improved symptoms without these risks. Phytoestrogens, while evaluated, have shown mixed results. Probiotics like L. acidophilus regulate the gut microbiome, immune system, and central nervous system, effectively alleviating symptoms such as hot flashes, fatigue, and vaginal dryness, regardless of estrogen and FSH levels. |
Rapisarda RCT Italy [32] | n = 60 Active group n = 40 Placebo group n = 20 | 32.93 ± 7.58 y/o | Active group: L. rhamnosus CA15 (DSM 33960) oral capsules 10 10 log CFU/g once daily. Placebo group: received the same capsule with corn starch. | Clinical signs and symptoms: severity score; vaginal fluid pH; nugent score; Lactobacillary Grade (LBG) | T0: 10 days T1: 30 days after end of treatment (washing, T2) | Impact of L. rhamnosus CA15: significantly inhibits sperm activity and reduces pregnancy rates through its adhesion properties. |
Orazov RCT USA [33] | Postmenopausal atrophic vaginitis patients n = 69 G-1 n = 34 G-2 n = 35 | 53.6 ± 2.1 y/o) | G-1: estriol monotherapy, 0.5 mg intranasally, administered daily. G-2: treatment: intra-vascular combination therapy with 0.2 mg estriol, 2.0 mg of micronized progesterone L. casei rhamnosus dodderlane (LCR), and 341 mg lyophilized culture. | Nappi RE Scale; D. Barlow Scale; vaginal pH measurement; colpocytology; Bachmann’s Vaginal Health Index; colposcopy; sonography; pipelle biopsy (if needed); pap test | Treatment period: 12 weeks Follow-up period: 12 weeks after treatment | G2: Significant improvement in vulva/vaginal mucosa (pale pink, sufficient moisture) and symptoms (itching, burning, dryness, dyspareunia). Dyspareunia relief: G1: 52.9% relief at 12 weeks and 70.6% complete relief at 24 weeks. G2: 71.5% relief at 12 weeks and 97.1% complete relief at 24 weeks (p < 0.05). Objective symptoms: G2 showed greater improvements in elasticity (77.1% vs 55.9%) and epithelial thickness (85.7% vs 76.5%) at 12 weeks (p < 0.05). At 24 weeks: continued improvement in G2 (elasticity at 85.7% and epithelial thickness at 77.1%). Other parameters (no sig. diff.): no changes in vaginal folds, fluid secretion, moisture, color, D. Barlow Scale, pH, or Bachmann’s Index. pH: 4.1 ± 0.3; Bachmann’s Index: 4.65 ± 0.59 after 3 months. Colposcopy: No abnormal findings post-treatment. |
Khodaverdi RCT Iran [34] | n = 37 Probiotic group (LactoFem®): 18 Placebo group: 19 | 18–45 y/o women with stage III-IV endometriosis and VAS Pain Score: initial score > 4 | Treatment group: LactoFem® probiotic capsule containing L. acidophilus, L. plantarum, L. fermentum, and L. gasseri; 1 capsule daily. Control group: identical placebo capsules. | Dysmenorrhea; chronic pelvic pain; overall pain scores; safety | 12 weeks | Dysmenorrhea: significant pain reduction in the first 8 weeks (p = 0.018); no change after (p > 0.05). Chronic pelvic pain: greater reduction with probiotics (week 0–8, p = 0.119), but placebo improved more (week 8–12, p = 0.02). Overall pain: significant reduction with probiotics (week 0–8, p = 0.017); continued difference (week 8–12, p = 0.015). |
Mollazadeh-Narestan RCT Iran [35] | n = 18 women with VVC (Candida spp.) | 15–49 y/o | Fluconazole group: one red capsule containing 150 mg fluconazole. Placebo group: 30 white capsules of placebo (potato starch). Probiotic group: 30 white capsules of probiotic (L. acidophilus LA-5, 1 × 109 CFU/g). | Vaginal pH; microbiological tests; clinical symptoms (vaginal discharge, itching, burning, inflammation, erythema, dysuria, and dyspareunia); patient satisfaction and side effects. | Initial Reminder: days 12–15 First FU: days 30–35 Second FU: days 60–65 | Negative culture rate: no difference at 30–35 days (p = 0.127); fluconazole group had a higher rate at 60–65 days (p = 0.016). Symptom improvement: Fluconazole group had lower rates of abnormal discharge, erythema (both follow-ups), and pruritus (second follow-up) (p < 0.05). No difference: burning, frequent urination, dysuria, and dyspareunia (p > 0.05) in both groups. Overall effectiveness: L. acidophilus was as effective as fluconazole in treating VVC symptoms but less effective in preventing recurrence. |
Abbasi RCT Iran [36] | n = 47 treatment n = 22 control n = 25 | FamiLact: 34.5 y/o Placebo group: 33.8 y/o | Treatment group: one capsule (500 mg) of FamiLact daily (1 × 109 CFU) of L. rhamnosus, L. casei, L. bulgaricus, L. acidophilus, B. breve, B. longum, S. Thermophilus, and prebiotic Fructooligosaccharides). Control group: identical placebo capsule. | Sperm characteristics; sperm concentration; motility; normal morphology; DNA fragmentation. | 80 days | Baseline: No significant differences in sperm characteristics between groups. FamiLact vs. control: FamiLact significantly improved sperm concentration (p = 0.01), motility (p = 0.04), and morphology (p = 0.03). Pre-/post-treatment (FamiLact): significant improvements in concentration (p = 0.004), motility (p = 0.003), morphology (p = 0.014), lipid peroxidation (p = 0.02), and DNA fragmentation (p = 0.005). Non-significant changes: semen volume and CMA3 positivity showed no difference. Placebo: only DNA fragmentation improved (p = 0.03); other parameters remained unchanged. |
Li In vivo; in vitro China [29] | Human semen n = 18 Animal model: male: n = 18 female: n = 72 | 22–38 y/o Rats: 10 to 11 weeks old | Probiotics and bacterial strains treatment: L. crispatus Lcr-MH175; Salmonella typhimurium VNP20009; engineered Salmonella typhimurium VNP20009 DNase I; Escherichia coli O157:H7 (ATCC 12806). | In vitro: sperm motility Ca2+ concentration and adhesion to sperm. In vivo: pregnancy rates, uterine inflammatory factors (TLR-4/NF-κB, TNF-α, IL-1β), and apoptosis factors (Fas Ligand, Bax/Bcl-2). | 2, 4, and 6 h | In vitro: L. crispatus, VNP20009, VNP20009 DNase I, and E. coli O157:H7 significantly inhibited sperm motility with negative impact on sperm intracellular Ca2+ concentration. In vivo: : L. crispatus and other tested bacteria significantly reduced pregnancy rates in rats. L. crispatus positively influenced maternal health and offspring development. Transplantation of L. crispatus maintained normal vaginal microbiota composition in healthy rats and markedly reduced the expression of uterine inflammatory factors (TLR-4/NF-κB, TNF-α, IL-1β) and apoptosis factors (Fas Ligand, Bax/Bcl-2) compared to other strains. |
Ansari In vivo Iran [37] | 96 male rats divided into eight groups | 8-week-old rats | Control group: water and normal diet only. Sham group: compound solvent. Diabetic control group (DM): injected with STZ and gavaged with 1 mL of normal saline. Exp G-1 (Cynara): 1 mL of 400 mg/kg hydroalcoholic Cynara scolymus L. extract. Exp G-2 (BBL): 1 mL of B. longum (1 × 109 CFU/mL/day). Exp G-3 (DM + Cynara): diabetic rats received 1 mL of 400 mg/kg hydroalcoholic Cynara scolymus L. extract by gavage. Exp G-4 (DM + BBL): diabetic rats received 1 mL of B. longum (1 × 109 CFU/mL/day) by gavage. Exp G-5 (DM + Cynara + BBL): diabetic rats received 0.5 mL of 400 mg/kg hydroalcoholic Cynara scolymus L. extract and 0.5 mL of B. longum (1 × 109 CFU/mL/day) by gavage. | Evaluation of biochemical parameters: FBS (calorimetric method), FSH, LH, and testosterone (ELISA); measurement of TAC (spectrophotometric method) and MDA (colorimetric method); sperm parameters: count, motility, viability (eosin–nigrosin staining), and morphology; gene expression analysis: RT-PCR for prm1, Bcl-2, and Caspase-9; stereological analysis: testis volume estimation (point counting), cell count (optical disector), and tubular length assessment. | Hydroalcoholic extract of Cynara scolymus L. combined with B. longum exhibited these beneficial effects compared to the diabetic group: Lowered levels: significant reduction in FBS (p < 0.001), MDA (p < 0.05), and Caspase-9 expression (1.33-fold). Increased serum markers: elevated TAC, LH, FSH, and testosterone levels (p < 0.05). Gene expression: upregulation of protamine (p = 0.016) and Bcl-2 (0.72-fold). Improved reproductive parameters: enhanced sexual lineage cell count, testis weight, sperm count, motility, normal morphology, and seminiferous tubule volume/length (p < 0.05). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-J.; Nguyen, T.T.M.; Jin, X.; Zheng, Q.; Park, S.-J.; Yi, G.-S.; Yi, T.-H. A PRISMA Systematic Review of Sexual Dysfunction and Probiotics with Pathophysiological Mechanisms. Biology 2025, 14, 286. https://doi.org/10.3390/biology14030286
Yang S-J, Nguyen TTM, Jin X, Zheng Q, Park S-J, Yi G-S, Yi T-H. A PRISMA Systematic Review of Sexual Dysfunction and Probiotics with Pathophysiological Mechanisms. Biology. 2025; 14(3):286. https://doi.org/10.3390/biology14030286
Chicago/Turabian StyleYang, Su-Jin, Trang Thi Minh Nguyen, Xiangji Jin, Qiwen Zheng, Se-Jig Park, Gyeong-Seon Yi, and Tae-Hoo Yi. 2025. "A PRISMA Systematic Review of Sexual Dysfunction and Probiotics with Pathophysiological Mechanisms" Biology 14, no. 3: 286. https://doi.org/10.3390/biology14030286
APA StyleYang, S.-J., Nguyen, T. T. M., Jin, X., Zheng, Q., Park, S.-J., Yi, G.-S., & Yi, T.-H. (2025). A PRISMA Systematic Review of Sexual Dysfunction and Probiotics with Pathophysiological Mechanisms. Biology, 14(3), 286. https://doi.org/10.3390/biology14030286