The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Collection
2.2. Sample Preparation and Mounting in the Organ Bath
2.3. Stimulation with Oxytocin
2.4. Stimulation with Denaverine
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Oxytocin
3.1.1. General Observations
3.1.2. Amplitude
3.1.3. Mean Force
3.1.4. AUC
3.1.5. Frequency
3.1.6. Analysis of the First Oxytocin Induced Contraction
3.2. Denaverine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Concannon, P.W.; McCann, J.P.; Temple, M. Biology and endocrinology of ovulation, pregnancy and parturition in the dog. J. Reprod. Fertil. Suppl. 1989, 39, 3–25. [Google Scholar] [PubMed]
- Hoffmann, B.; Höveler, R.; Hasan, S.H.; Failing, K. Ovarian and pituitary function in dogs after hysterectomy. J. Reprod. Fertil. 1992, 96, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Nohr, B.; Hoffmann, B.; Steinetz, B.E. Investigation of the endocrine control of parturition in the dog by application of an antigestagen. J. Reprod. Fertil. Suppl. 1993, 47, 542–543. [Google Scholar]
- Kowalewski, M.P.; Beceriklisoy, H.B.; Pfarrer, C.; Aslan, S.; Kindahl, H.; Kücükaslan, I.; Hoffmann, B. Canine placenta: A source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction 2010, 139, 655–664. [Google Scholar] [CrossRef]
- Concannon, P.W.; Isaman, L.; Frank, D.A.; Michel, F.J.; Currie, W.B. Elevated concentrations of 13,14-dihydro-15-keto-prostaglandin F-2 in maternal plasma during prepartum luteolysis and parturition in dogs (Canis familiaris). Reproduction 1988, 84, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.P.; Tavares Pereira, M.; Kazemian, A. Canine conceptus-maternal communication during maintenance and termination of pregnancy, including the role of species-specific decidualization. Theriogenology 2020, 150, 329–338. [Google Scholar] [CrossRef]
- Hoffmann, B.; Höveler, R.; Nohr, B.; Hasan, S.H. Investigations on hormonal changes around parturition in the dog and the occurrence of pregnancy-specific non conjugated oestrogens. Exp. Clin. Endocrinol. 1994, 102, 185–189. [Google Scholar] [CrossRef]
- Zatta, S.; Rehrauer, H.; Gram, A.; Boos, A.; Kowalewski, M.P. Transcriptome analysis reveals differences in mechanisms regulating cessation of luteal function in pregnant and non-pregnant dogs. BMC Genomics 2017, 18, 757. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.P. Selected Comparative Aspects of Canine Female Reproductive Physiology. In Encyclopedia of Reproduction; Elsevier: Amsterdam, The Netherlands, 2018; pp. 682–691. [Google Scholar]
- van der Weyden, G.; Taverne, M.; Dieleman, S.; Wurth, Y.; Bevers, M.; van Oord, H. Physiological aspects of pregnancy and parturition in dogs. J. Reprod. Fertil. Suppl. 1989, 39, 211–224. [Google Scholar]
- Gram, A.; Boos, A.; Kowalewski, M.P. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition. Reprod. Domest. Anim. 2014, 49 (Suppl. S2), 41–49. [Google Scholar] [CrossRef]
- Veiga, G.A.; Milazzotto, M.P.; Nichi, M.; Lúcio, C.F.; Silva, L.C.; Angrimani, D.S.; Vannucchi, C.I. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches. Braz. J. Med. Biol. Res. 2015, 48, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Derussi, A.; De Souza, R.; Volpato, R.; Guaitolini, C.; Ackermann, C.; Taffarel, M.; Cardoso, G.; Dal-Pai-Silva, M.; Lopes, M. Progesterone (PR), Oestrogen (ER-α and ER-β) and Oxytocin (OTR) Gene Expression in the Oviduct and Uterus of Pregnant and Non-pregnant Bitches. Reprod. Domest. Anim. 2012, 47, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Darvelid, A.W.; Linde-Forsberg, C. Dystocia in the bitch: A retrospective study of 182 cases. J. Small Anim. Pract. 1994, 35, 402–407. [Google Scholar] [CrossRef]
- Linde Forsberg, C.; Persson, G. A survey of dystocia in the Boxer breed. Acta Vet. Scand. 2007, 49, 8. [Google Scholar] [CrossRef] [Green Version]
- Linde-Forsberg, C.; Eneroth, A. Abnormalities in pregnancy, parturition, and the periparturient period. In Textbook of Veterinary Internal Medicine, 5th ed.; Ettinger, S.J., Feldmann, E.C., Eds.; Saunders: Philadelphia, PA, USA, 2005; Volume 5, pp. 1527–1539. [Google Scholar]
- Davidson, A.P. Primary Uterine Inertia in Four Labrador Bitches. J. Am. Anim. Hosp. Assoc. 2011, 47, 83–88. [Google Scholar] [CrossRef]
- Bergström, A.; Fransson, B.; Lagerstedt, A.S.; Kindahl, H.; Olsson, U.; Olsson, K. Hormonal concentrations in bitches with primary uterine inertia. Theriogenology 2010, 73, 1068–1075. [Google Scholar] [CrossRef]
- Irons, P.C.; Nöthling, J.O.; Volkmann, D.H. Failure of luteolysis leads to prolonged gestation in a bitch: A case report. Theriogenology 1997, 48, 353–359. [Google Scholar] [CrossRef] [PubMed]
- McLean, L. Single pup syndrome in an English Bulldog: Failure of luteolysis. Companion Anim. 2012, 17, 17–20. [Google Scholar] [CrossRef]
- Jungmann, C.; Gauguin Houghton, C.; Goth Nielsen, F.; Packeiser, E.-M.; Körber, H.; Reichler, I.M.; Balogh, O.; Goericke-Pesch, S. Involvement of Oxytocin and Progesterone Receptor Expression in the Etiology of Canine Uterine Inertia. Int. J. Mol. Sci. 2022, 23, 13601. [Google Scholar] [CrossRef]
- Rempel, L.M.; Körber, H.; Reichler, I.M.; Balogh, O.; Goericke-Pesch, S. Investigations on the potential role of prostaglandin E2 in canine uterine inertia. Theriogenology 2021, 175, 134–147. [Google Scholar] [CrossRef]
- Rempel, L.M.; Lillevang, K.T.A.; Straten, A.-K.T.; Friðriksdóttir, S.B.; Körber, H.; Wehrend, A.; Kowalewski, M.P.; Reichler, I.M.; Balogh, O.; Goericke-Pesch, S. Do uterine PTGS2, PGFS, and PTGFR expression play a role in canine uterine inertia? Cell. Tissue Res. 2021, 385, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Egloff, S.; Reichler, I.M.; Kowalewski, M.P.; Keller, S.; Goericke-Pesch, S.; Balogh, O. Uterine expression of smooth muscle alpha- and gamma-actin and smooth muscle myosin in bitches diagnosed with uterine inertia and obstructive dystocia. Theriogenology 2020, 156, 162–170. [Google Scholar] [CrossRef]
- Julian, L.; Olson, M.F. Rho-associated coiled-coil containing kinases (ROCK). Small GTPases 2014, 5, e29846. [Google Scholar] [CrossRef] [PubMed]
- Thumkeo, D.; Watanabe, S.; Narumiya, S. Physiological roles of Rho and Rho effectors in mammals. Eur. J. Cell. Biol. 2013, 92, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Frehner, B.L.; Reichler, I.M.; Kowalewski, M.P.; Gram, A.; Keller, S.; Goericke-Pesch, S.; Balogh, O. Implications of the RhoA/Rho associated kinase pathway and leptin in primary uterine inertia in the dog. J. Reprod. Dev. 2021, 67, 207–215. [Google Scholar] [CrossRef]
- Davidson, A.P. Uterine and fetal monitoring in the bitch. Vet. Clin. North Am. Small Anim. Pract. 2001, 31, 305–313. [Google Scholar] [CrossRef]
- Bennett, D. Canine dystocia--a review of the literature. J. Small Anim. Pract. 1974, 15, 101–117. [Google Scholar] [CrossRef]
- Günzel-Apel, A.-R.; Bostedt, H. Reproduktionsmedizin und Neonatologie von Hund und Katze, 1st ed.; Schattauer: Stuttgart, Germany, 2016. [Google Scholar]
- Münnich, A.; Küchenmeister, U. Dystocia in Numbers—Evidence-Based Parameters for Intervention in the Dog: Causes for Dystocia and Treatment Recommendations. Reprod. Domest. Anim. 2009, 44, 141–147. [Google Scholar] [CrossRef]
- Verstegen-Onclin, K.; Verstegen, J. Endocrinology of pregnancy in the dog: A review. Theriogenology 2008, 70, 291–299. [Google Scholar] [CrossRef]
- Ferguson, J.K.W. A study of the motility of the intact uterus at term. Surg. Gynecol. Obstet. 1941, 73, 359–366. [Google Scholar]
- Hollinshead, F.K.; Hanlon, D.W.; Gilbert, R.O.; Verstegen, J.P.; Krekeler, N.; Volkmann, D.H. Calcium, parathyroid hormone, oxytocin and pH profiles in the whelping bitch. Theriogenology 2010, 73, 1276–1283. [Google Scholar] [CrossRef]
- Bergström, A.; Fransson, B.; Lagerstedt, A.S.; Olsson, K. Primary uterine inertia in 27 bitches: Aetiology and treatment. J. Small Anim. Pract. 2006, 47, 456–460. [Google Scholar] [CrossRef]
- Tamminen, T.; Sahlin, L.; Masironi-Malm, B.; Dahlbom, M.; Katila, T.; Taponen, J.; Laitinen-Vapaavuori, O. Expression of uterine oxytocin receptors and blood progesterone, 13,14-dihydro-15-Keto-Prostaglandin F2α, and ionized calcium levels in dystocic bitches. Theriogenology 2019, 135, 38–45. [Google Scholar] [CrossRef]
- Hüller, H. Pharmakologie und Klinik von O-(2-Äthylbutoxy)-benzilsäure-2-dimethylaminoäthylesterhydrochlorid (=Spasmalgan). Zbl Pharm. 109 1970, 2, 115–139. [Google Scholar]
- Scharein, E.; Bromm, B. The intracutaneous pain model in the assessment of analgesic efficacy. Pain. Rev. 1998, 5, 216–246. [Google Scholar] [CrossRef]
- Hüller, H. Pharmakologische Vergleichsuntersuchungen mit Derivaten des a,a-Diphenyl-a-(2-äthylbutoxy)-essigsäure-(b-dimethylaminoathyl) esters. Acta Biol. Med. Ger. 1969, 22, 751–758. [Google Scholar] [PubMed]
- Künzel, J.; Geisler, K.; Hoffmann, I.; Müller, A.; Beckmann, M.W.; Dittrich, R. Myometrial response to neurotropic and musculotropic spasmolytic drugs in an extracorporeal perfusion model of swine uteri. Reprod. Biomed. Online 2011, 23, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Veyx, P.G. Senisblex—Fachinformation. 2013. Available online: https://docplayer.org/44440607-Sensiblex-tocospasmolytikum-geburtserleichterung-bessere-aufweitung-weniger-geburtsverletzungen-geringere-neugeborenenverluste-b-6.html (accessed on 1 February 2021).
- Wollrab, J. Gutachten über die vorklinische Prüfung von Spasmalgan® bei Geburten von Rind, Schwein und Fleischfressern. 1975; Unpublished Work. [Google Scholar]
- van der Weijden, B.C.; Taverne, M.A.M. Aspects of obstetric care in the dog. Vet. Q. 1994, 16, 20–22. [Google Scholar] [CrossRef]
- Siena, G.; Milani, C. Usefulness of Maternal and Fetal Parameters for the Prediction of Parturition Date in Dogs. Animals 2021, 11, 878. [Google Scholar] [CrossRef]
- Elfers, K.; Menne, L.; Colnaghi, L.; Hoppe, S.; Mazzuoli-Weber, G. Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells 2023, 12, 577. [Google Scholar] [CrossRef]
- Verhaar, N.; Hoppe, S.; Grages, A.M.; Hansen, K.; Neudeck, S.; Kästner, S.; Mazzuoli-Weber, G. Dexmedetomidine Has Differential Effects on the Contractility of Equine Jejunal Smooth Muscle Layers in Vitro. Animals 2023, 13, 1021. [Google Scholar] [CrossRef] [PubMed]
- Gogny, A.; Mallem, Y.; Destrumelle, S.; Thorin, C.; Desfontis, J.C.; Gogny, M.; Fiéni, F. In vitro comparison of myometrial contractility induced by aglepristone-oxytocin and aglepristone-PGF2alpha combinations at different stages of the estrus cycle in the bitch. Theriogenology 2010, 74, 1531–1538. [Google Scholar] [CrossRef]
- Arrowsmith, S. Human Myometrial Contractility Assays. Methods Mol. Biol. 2022, 2384, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Arrowsmith, S.; Keov, P.; Muttenthaler, M.; Gruber, C.W. Contractility Measurements of Human Uterine Smooth Muscle to Aid Drug Development. J. Vis. Exp. 2018, 2384, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Cole, N.M.; Carvalho, J.C.; Erik-Soussi, M.; Ramachandran, N.; Balki, M. In Vitro Comparative Effect of Carbetocin and Oxytocin in Pregnant Human Myometrium with and without Oxytocin Pretreatment. Anesthesiology 2016, 124, 378–386. [Google Scholar] [CrossRef]
- Talati, C.; Carvalho, J.C.A.; Luca, A.; Balki, M. The Effect of Intermittent Oxytocin Pretreatment on Oxytocin-Induced Contractility of Human Myometrium in Vitro. Anesth. Analg. 2019, 128, 671–678. [Google Scholar] [CrossRef]
- Balki, M.; Erik-Soussi, M.; Ramachandran, N.; Kingdom, J.; Carvalho, J.C.A. The Contractile Effects of Oxytocin, Ergonovine, and Carboprost and Their Combinations: An in Vitro Study on Human Myometrial Strips. Anesth. Analg. 2015, 120, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, M.F. The response of rat and human uterus to oxytocin from different gestational stages in vitro. Gen. Physiol. Biophys. 2017, 36, 75–82. [Google Scholar] [CrossRef]
- Anouar, A.; Clerget, M.S.; Durroux, T.; Barberis, C.; Germain, G. Comparison of vasopressin and oxytocin receptors in the rat uterus and vascular tissue. Eur. J. Pharmacol. 1996, 308, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, L.T.; Skurnick, J.H.; Wojtczuk, A.S.; Linden, M.; Kuhar, M.J.; Weiss, G. The antagonistic effect of oxytocin and relaxin on rat uterine segment contractility. Am. J. Obstet. Gynecol. 1989, 161, 1644–1649. [Google Scholar] [CrossRef]
- Sullivan, T.J. Response of the mammalian uterus to prostaglandins under differing hormonal conditions. Br. J. Pharmacol. Chemother. 1966, 26, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, T.; Kajiwara, T.; Kiuchi, A.; Hatakeyama, H.; Taneike, T. Muscle layer- and region-dependent distributions of oxytocin receptors in the porcine myometrium. Peptides 2001, 22, 963–974. [Google Scholar] [CrossRef]
- Hartley, M.L.; Pennefather, J.N.; Story, M.E. Effects of ovarian steroids upon responses mediated by adrenoceptors in separated layers of the myometrium and in the costo-uterine muscle of the guinea-pig. Br. J. Pharmacol. 1983, 79, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Hartley, M.L.; Pennefather, J.N.; Story, M.E. Responses mediated by adrenoceptors in the separated layers of the myometrium and in the costo-uterine muscle of the guinea pig during the estrous cycle. Biol. Reprod. 1983, 28, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Adam, S.P.; Hartley, M.L.; Pennefather, J.N.; Story, M.E.; Handberg, G.M. Uterine contractility and actions of catecholamines in longitudinal and circular uterine layers from ovariectomised guinea-pigs: The effects of ovarian steroids. J. Auton. Pharmacol. 1985, 5, 317–324. [Google Scholar] [CrossRef]
- Eurell, J.A.C.; Frappier, B.L.; Dellmann, H.-D. Dellmann’s Textbook of Veterinary Histology, 6th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Pino, J.H. Arrangement of Muscle Fibers in the Myometrium of the Human Uterus: A Mesoscopic Study. MOJ Anat. Physiol. 2017, 4, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Balki, M.; Erik-Soussi, M.; Kingdom, J.; Carvalho, J.C.A. Oxytocin Pretreatment Attenuates Oxytocin-induced Contractions in Human Myometrium in Vitro. Anesthesiology 2013, 119, 552–561. [Google Scholar] [CrossRef]
- Balki, M.; Ramachandran, N.; Lee, S.; Talati, C. The Recovery Time of Myometrial Responsiveness after Oxytocin-Induced Desensitization in Human Myometrium in Vitro. Anesth. Analg. 2016, 122, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Hirsbrunner, G.; Reist, M.; Couto, S.S.; Steiner, A.; Snyder, J.; vanLeeuwen, E.; Liu, I. An in vitro study on spontaneous myometrial contractility in the mare during estrus and diestrus. Theriogenology 2006, 65, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Górriz-Martín, L.; Ulbrich, S.E.; Schmicke, M.; Hirsbrunner, G.; Keller, C.; Yücesoy, N.; Pfarrer, C.; Bollwein, H.; Heppelmann, M. The myometrial contractility during late pregnancy in dairy cows, in vitro. Anim. Reprod. Sci. 2017, 181, 130–140. [Google Scholar] [CrossRef]
- Garfield, R.E.; Blennerhassett, M.G.; Miller, S.M. Control of myometrial contractility: Role and regulation of gap junctions. Oxf. Rev. Reprod. Biol. 1988, 10, 436–490. [Google Scholar]
- Garfield, R.E.; Sims, S.; Daniel, E.E. Gap junctions: Their presence and necessity in myometrium during parturition. Science 1977, 198, 958–960. [Google Scholar] [CrossRef]
- Graubner, F.R.; Boos, A.; Aslan, S.; Kücükaslan, I.; Kowalewski, M.P. Uterine and placental distribution of selected extracellular matrix (ECM) components in the dog. Reproduction 2018, 155, 403–421. [Google Scholar] [CrossRef] [Green Version]
- Tomiyasu, B.A.; Chen, C.J.; Marshall, J.M. Comparison of the activity of circular and longitudinal myometrium from pregnant rats: Co-ordination between muscle layers. Clin. Exp. Pharmacol. Physiol. 1988, 15, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Good, D.M.; Granger, S.E.; Hollingsworth, M.; Robson, A.; Small, R.C.; Weston, A.H. The spasmogenic action of oxytocin in the rat uterus—Comparison with other agonists. Br. J. Pharmacol. 1986, 88, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrowsmith, S.; Neilson, J.; Bricker, L.; Wray, S. Differing in Vitro Potencies of Tocolytics and Progesterone in Myometrium from Singleton and Twin Pregnancies. Reprod. Sci. 2016, 23, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Turton, P.; Arrowsmith, S.; Prescott, J.; Ballard, C.; Bricker, L.; Neilson, J.; Wray, S. A Comparison of the Contractile Properties of Myometrium from Singleton and Twin Pregnancies. PLoS ONE 2013, 8, e63800. [Google Scholar] [CrossRef] [Green Version]
- Arrowsmith, S.; Neilson, J.; Wray, S. The combination tocolytic effect of magnesium sulfate and an oxytocin receptor antagonist in myometrium from singleton and twin pregnancies. Am. J. Obstet. Gynecol. 2016, 215, e781–e789. [Google Scholar] [CrossRef] [Green Version]
- Gorriz Martin, L. An in Vitro Study on the Myometrial Contractility in Dairy Cattle before Calving and after Postpartum LPS Infusion. Relation to Blood Progesterone and Estradiol-17 [beta] Levels. Ph.D. Thesis, Tierärztliche Hochschule, Hannover, Germany, 2013. [Google Scholar]
- Taneike, T.; Kitazawa, T.; Funakura, H.; Asanuma, K.; Tsuji, S.; Yamada, M.; Teraoka, H.; Ohga, A. Smooth muscle layer-specific variations in the autonomic innervation of bovine myometrium. Gen. Pharmacol. 1999, 32, 91–100. [Google Scholar] [CrossRef]
- Kitazawa, T.; Maezono, Y.; Taneike, T. The mechanisms of alpha(2)-adrenoceptor agonist-induced contraction in longitudinal muscle of the porcine uterus. Eur. J. Pharmacol. 2000, 390, 185–195. [Google Scholar] [CrossRef]
- Taneike, T.; Bando, S.; Takasaki, K.; Okumura, M.; Sato, H.; Teraoka, H.; Kitazawa, T.; Ohga, A. Muscle layer and regional differences in autonomic innervation and responsiveness to transmitter agents in swine myometrium. J. Auton. Pharmacol. 1994, 14, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Taneike, T.; Miyazaki, H.; Nakamura, H.; Ohga, A. Autonomic innervation of the circular and longitudinal layers in swine myometrium. Biol. Reprod. 1991, 45, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.H.M.; Marshall, J.M. Effects of catecholamines on circular and longitudinal uterine muscle of the rat. Eur. J. Pharmacol. 1981, 76, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Nesheim, B.-I. Effect of Noradrenaline and Isoprenaline on the Circular and Longitudinal Muscle of the Oestrogen Dominated Rabbit Uterus. Acta Pharmacol. Toxicol. 1972, 31, 296–304. [Google Scholar] [CrossRef]
- Sobotta, J. Beiträge zur vergleichenden Anatomie und Entwickelungsgeschichte der Uterusmuskulatur. Arch. Für Mikrosk. Anat. 1891, 38, 52–100. [Google Scholar] [CrossRef]
- Crankshaw, D.J. The sensitivity of the longitudinal and circular muscle layers of the rat’s myometrium to oxytocin in vitro during pregnancy. Can. J. Physiol. Pharmacol. 1987, 65, 773–777. [Google Scholar] [CrossRef]
- Grotegut, C.A.; Paglia, M.J.; Johnson, L.N.C.; Thames, B.; James, A.H. Oxytocin exposure during labor among women with postpartum hemorrhage secondary to uterine atony. Am. J. Obstet. Gynecol. 2011, 204, e51–e56. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.L.; Yeh, S.Y.; Phelan, J.P.; Bruce, S.; Paul, R.H. Emergency hysterectomy for obstetric hemorrhage. Obstet. Gynecol. 1984, 64, 376–380. [Google Scholar] [CrossRef]
- Balki, M.; Ronayne, M.; Davies, S.; Fallah, S.; Kingdom, J.; Windrim, R.; Carvalho, J.C. Minimum oxytocin dose requirement after cesarean delivery for labor arrest. Obstet. Gynecol. 2006, 107, 45–50. [Google Scholar] [CrossRef]
- Kelly, E.; Bailey, C.P.; Henderson, G. Agonist-selective mechanisms of GPCR desensitization. Br. J. Pharmacol. 2008, 153 (Suppl. S1), S379–S388. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, W.P.; Caron, M.G.; Lefkowitz, R.J. Turning off the signal: Desensitization of beta-adrenergic receptor function. FASEB J. 1990, 4, 2881–2889. [Google Scholar] [CrossRef]
- Mohan, M.L.; Vasudevan, N.T.; Gupta, M.K.; Martelli, E.E.; Naga Prasad, S.V. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr. Mol. Pharmacol. 2012, 5, 350–361. [Google Scholar] [CrossRef]
- Di Scala-Guenot, D.; Strosser, M.T. Downregulation of the oxytocin receptor on cultured astroglial cells. Am. J. Physiol. 1995, 268, C413–C418. [Google Scholar] [CrossRef]
- Phaneuf, S.; Asbóth, G.; MacKenzie, I.Z.; Melin, P.; López Bernal, A. Effect of oxytocin antagonists on the activation of human myometrium in vitro: Atosiban prevents oxytocin-induced desensitization. Am. J. Obstet. Gynecol. 1994, 171, 1627–1634. [Google Scholar] [CrossRef]
- Rajagopal, S.; Shenoy, S.K. GPCR desensitization: Acute and prolonged phases. Cell. Signal. 2018, 41, 9–16. [Google Scholar] [CrossRef]
- Robinson, C.; Schumann, R.; Zhang, P.; Young, R.C. Oxytocin-induced desensitization of the oxytocin receptor. Am. J. Obstet. Gynecol. 2003, 188, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Phaneuf, S. Desensitization of oxytocin receptors in human myometrium. Hum. Reprod. Update 1998, 4, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaneuf, S.; Rodríguez Liñares, B.; TambyRaja, R.L.; MacKenzie, I.Z.; López Bernal, A. Loss of myometrial oxytocin receptors during oxytocin-induced and oxytocin-augmented labour. J. Reprod. Fertil. 2000, 120, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M. Behavior of uterine muscle in Na-deficient solutions; effects of oxytocin. Am. J. Physiol. Leg. Content 1963, 204, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Schröder, M. Die Nichtinvasive Wehenmessung als Methode zur Überwachung Physiologischer und Pathologischer Geburtsvorgänge bei der Hündin und der Welpenvitalität. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2008. [Google Scholar]
- Golob, A.-L. Einsatz von Denaverinhydrochlorid bei Milchkühen und Färsen mit Gestörtem Geburtsvorgang. Ph.D. Thesis, Universitätsbibliothek der Justus-Liebig-Universität Gießen, Giessen, Germany, 2015. [Google Scholar]
- Lange, K.; Heuwieser, W.; Fischer-Tenhagen, C. Influence of denaverine hydrochloride on calving ease in Holstein-Friesian heifers. J. Dairy. Sci. 2019, 102, 5410–5418. [Google Scholar] [CrossRef]
- Lange, K.; Heuwieser, W.; Fischer-Tenhagen, C. Effect of denaverine hydrochloride application to heifers on the APGAR score and lactate concentration in newborn calves. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2018, 46, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Zobel, R.; Taponen, J. Denaverine hydrochloride and carbetocin increased welfare during and after parturition and enhanced subsequent fertility in cattle. J. Dairy. Sci. 2014, 97, 3570–3577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollrab, J. Ergebnisse der Anwendung von Spasmotitrat® VEB Berlin-Chemie bei Geburten von Nutz- und Haustieren. Medicam. Sonderausg. Veterinärmedizin 1986, 26, 18. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jungmann, C.; Pyzik, S.-C.; Packeiser, E.-M.; Körber, H.; Hoppe, S.; Mazzuoli-Weber, G.; Goericke-Pesch, S. The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride. Biology 2023, 12, 860. https://doi.org/10.3390/biology12060860
Jungmann C, Pyzik S-C, Packeiser E-M, Körber H, Hoppe S, Mazzuoli-Weber G, Goericke-Pesch S. The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride. Biology. 2023; 12(6):860. https://doi.org/10.3390/biology12060860
Chicago/Turabian StyleJungmann, Carolin, Sophie-Charlotte Pyzik, Eva-Maria Packeiser, Hanna Körber, Susanne Hoppe, Gemma Mazzuoli-Weber, and Sandra Goericke-Pesch. 2023. "The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride" Biology 12, no. 6: 860. https://doi.org/10.3390/biology12060860
APA StyleJungmann, C., Pyzik, S. -C., Packeiser, E. -M., Körber, H., Hoppe, S., Mazzuoli-Weber, G., & Goericke-Pesch, S. (2023). The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride. Biology, 12(6), 860. https://doi.org/10.3390/biology12060860