Next Article in Journal
Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition
Previous Article in Journal
Flexible n-Type Tungsten Carbide/Polylactic Acid Thermoelectric Composites Fabricated by Additive Manufacturing
Open AccessArticle

Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, China
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
Authors to whom correspondence should be addressed.
Coatings 2018, 8(1), 26;
Received: 15 November 2017 / Revised: 4 January 2018 / Accepted: 4 January 2018 / Published: 5 January 2018
Solution-processed CdTe nanocrystals solar cells have attracted much attention due to their low cost, low material consumption, and potential for roll-to-roll production. Among all kinds of semiconductor materials, CdS exhibits the lowest lattice mismatch with CdTe, which permits high junction quality and high device performance. In this study, high quality CdS nanocrystals were prepared by a non-injection technique with tetraethylthiuram disufide and 2,2′-dithiobisbenzothiazole as the stabilizers. Based on the CdTe and CdS nanocrystals, devices with the architecture of ITO/ZnO/CdS/CdTe/MoOx/Au were fabricated successfully by a solution process under ambient condition. The effects of annealing conditions, film thickness, and detailed device structure on the CdTe/CdS nanocrystal solar cells were investigated and discussed in detail. We demonstrate that high junction quality can be obtained by using CdS nanocrystal thin film compared to traditional CdS film via chemical bath deposition (CBD). The best device had short circuit current density (Jsc), open circuit voltage (Voc) and fill factor (FF) of 17.26 mA/cm2, 0.56 V, and 52.84%, respectively, resulting in a power conversion efficiency (PCE) of 5.14%, which is significantly higher than that reported using CBD CdS as the window layer. This work provides important suggestions for the further improvement of efficiency in CdTe nanocrystal solar cells. View Full-Text
Keywords: nanocrystal; CdTe; CdS; solar cells; solution processed nanocrystal; CdTe; CdS; solar cells; solution processed
Show Figures

Graphical abstract

MDPI and ACS Style

Liu, S.; Liu, W.; Heng, J.; Zhou, W.; Chen, Y.; Wen, S.; Qin, D.; Hou, L.; Wang, D.; Xu, H. Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals. Coatings 2018, 8, 26.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

Back to TopTop