Interface Modulation of CoNi Alloy Decorated with Few-Layer Reduced Graphene Oxide for High-Efficiency Microwave Absorption
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of CoNi-MOF-GO Precursors
2.2. Synthesis of CoNi/rGO Composites
2.3. Characterization
2.4. Microwave Absorption and Electromagnetic Parameters Measurement
3. Results and Discussion
3.1. Material Synthesis and Structural Characterizations
3.2. Electromagnetic Wave Absorption Properties of Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Liu, X.; Nie, X.; Yang, W.; Wang, Y.; Yu, R.; Shui, J. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624. [Google Scholar] [CrossRef]
- Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, S.; Wang, W.; Qi, X.; Jia, Z.; Guan, H. Heterogeneous burr-like CoNiO2/Ti3C2Tx MXene nanospheres for ultralow microwave absorption and satellite skin application. Chem. Eng. J. 2023, 473, 145409. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Hu, F.; Lin, Y. Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res. 2022, 15, 7769–7777. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Zhou, Y.; Nie, S.; Wang, Y.; Liu, W.; He, Q.; Wu, W.; Bu, X.; Yang, X. Self-assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2019, 11, 38361–38371. [Google Scholar] [CrossRef]
- Quan, B.; Liang, X.; Ji, G.; Zhang, Y.; Xu, G.; Du, Y. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 2017, 9, 38814–38823. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Huang, X.; Fan, B.; Liu, Y.; Yue, J. Triple-layer structure of carbon foam coated with carbon nanotubes and FeNi alloy for high-performance electromagnetic wave absorption. J. Alloys Compd. 2023, 946, 169404. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, K.; Zhang, C.; Shu, R.; Zhu, J.; Liu, Y.; Huang, Y.; Liu, X. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Zuo, X.; Huang, H.; Sun, C.; Fan, Z.; Pan, L. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness. Chem. Eng. J. 2023, 467, 143414. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490. [Google Scholar] [CrossRef]
- Aslam, M.A.; Ahsen, R.; Uddin, W.; ur Rehman, S.; Khan, M.S.; Bilal, M.; Li, N.; Wang, Z. Tailoring the morphology of CoNi alloy by static magnetic field for electromagnetic wave absorption. Eur. Phys. J. Plus. 2022, 137, 480. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, X.; Chen, P.; Liu, J.; Zhu, X. Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni-Co alloy for high-performance electromagnetic microwave absorption. Compos. Commun. 2020, 20, 100354. [Google Scholar] [CrossRef]
- Tao, J.; Tan, R.; Xu, L.; Zhou, J.; Yao, Z.; Lei, Y.; Chen, P.; Li, Z.; Ou, J.Z. Ion-exchange strategy for metal-organic frameworks-derived composites with tunable hollow porous and microwave absorption. Small Methods 2022, 6, 2200429. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Wang, Y.; Di, X.; Lu, Z.; Wang, P.; Ma, M.; Ye, J. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 224–234. [Google Scholar] [CrossRef]
- Wu, F.; Ling, M.; Wan, L.; Liu, P.; Wang, Y.; Zhang, Q.; Zhang, B. Three-dimensional FeMZn (M = Co or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption. Chem. Eng. J. 2022, 435, 134905. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Z.; Zhou, W.; Liu, X.; Zhang, C.; Xu, B.; Wu, G. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253. [Google Scholar] [CrossRef]
- He, W.; Zheng, J.; Dong, W.; Jiang, S.; Lou, G.; Zhang, L.; Du, W.; Li, Z.; Li, X.; Chen, Y. Efficient electromagnetic wave absorption and Joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks. Chem. Eng. J. 2023, 459, 141677. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, B.; Fu, Y.; Zhang, Z.; Yan, P.; Liu, T. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 2021, 410, 128378. [Google Scholar] [CrossRef]
- Liu, P.; Gao, S.; Zhang, G.; Huang, Y.; You, W.; Che, R. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812. [Google Scholar] [CrossRef]
- Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv. Colloid Interface Sci. 2020, 285, 102281. [Google Scholar] [CrossRef]
- Liang, X.; Quan, B.; Sun, B.; Man, Z.; Xu, X.; Ji, G. Extended effective frequency of three-dimensional graphene with sustainable energy attenuation. ACS Sustain. Chem. Eng. 2019, 7, 10477–10483. [Google Scholar] [CrossRef]
- Liang, X.; Quan, B.; Ji, G.; Liu, W.; Zhao, H.; Dai, S.; Lv, J.; Du, Y. Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 2017, 5, 10570–10579. [Google Scholar] [CrossRef]
- Khanahmadi, S.; Masoudpanah, S.M. In-situ synthesis of NiCo/(Ni,Co)O/(Ni,Co)Fe2O4 composite as high-performance microwave absorber. J. Mater. Res. Technol. 2023, 22, 585–595. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Y.; Zeng, Q.; Wang, L.; Ding, J.; Zhang, R.; Che, R. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Wang, G.-S.; Zhang, X.-J.; Gao, C. Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading. J. Mater. Sci. Technol. 2022, 103, 34–41. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Y.; Zong, M.; Ding, X.; Li, S.; Wang, M. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J. 2017, 308, 214–221. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, X.; Qiao, J.; Fang, X.; Liu, K.; Liu, C.; Lin, J.; Li, L.; Liu, W.; Liu, J.; et al. In-situ fabrication of sustainable-N-doped-carbon-nanotube-encapsulated CoNi heterogenous nanocomposites for high-efficiency electromagnetic wave absorption. Small 2023, 19, 2302686. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Tian, J.; Chen, Z.; Wang, J.; Ma, L.-A.; Zhang, L.; Chen, S.; Wang, Q.; Ye, X. MXene/bimetallic CoNi-MOF derived magnetic-dielectric balanced composites with multiple heterogeneous interfaces for excellent microwave absorption. Chem. Eng. J. 2023, 478, 147413. [Google Scholar] [CrossRef]
- Chen, B.; Yun, J.; Zhao, Y.; Liu, Z.; Yan, J.; Deng, Z.; Zhang, H.; Zhao, W.; Wang, G.; Zhang, J. Constructing multiple heterogeneous interfaces in porous bimetallic FeNi3/C and CoNi/C flowers towards brilliant electromagnetic wave absorption performance. Carbon 2023, 212, 118108. [Google Scholar] [CrossRef]
- Yu, G.; Ye, M.; Han, A.; Liu, Q.; Su, Y.; Chen, C. Optimization of electromagnetic wave absorption properties of CoNi/MoSe2 composites with 3D flower-like by controlling the Co/Ni molar ratio. J. Alloys Compd. 2023, 939, 168592. [Google Scholar] [CrossRef]
- He, N.; He, Z.; Liu, L.; Lu, Y.; Wang, F.; Wu, W.; Tong, G. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 2020, 381, 122743. [Google Scholar] [CrossRef]
- Liang, L.-L.; Liu, Z.; Xie, L.-J.; Chen, J.-P.; Jia, H.; Kong, Q.-Q.; Sun, G.-H.; Chen, C.-M. Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon 2021, 171, 142–153. [Google Scholar] [CrossRef]
- Wang, W.; Nan, K.; Zheng, H.; Li, Q.; Wang, Y. Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption. Carbon 2023, 210, 118074. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Chen, X.; Wu, Y.; Zhang, C.; Wang, J.; Ji, J.; Li, K. Intense nonlinear dielectric and magnetic resonances of core-shell Ni@graphene composites and their improved microwave absorption properties. J. Mater. Chem. C. 2021, 9, 4910–4920. [Google Scholar] [CrossRef]
- Miao, P.; Qu, N.; Chen, W.; Wang, T.; Zhao, W.; Kong, J. A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 2023, 454, 140445. [Google Scholar] [CrossRef]
- Ma, Q.; Qiang, R.; Shao, Y.; Yang, X.; Xue, R.; Chen, B.; Chen, Y.; Feng, S. MOF-derived Co-C composites with 3D star structure for enhanced microwave absorption. J. Colloid Interface Sci. 2023, 651, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wan, L.; Li, Q.; Zhang, Q.; Zhang, B. Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption. Compos. Part B Eng. 2022, 236, 109839. [Google Scholar] [CrossRef]
- Wang, L.; Wen, B.; Yang, H.; Qiu, Y.; He, N. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105958. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Y.; Wang, J.; He, Q.; Wu, G. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid Interface Sci. 2023, 648, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Yang, R.; Yang, S.; Huang, W.; Zeng, Z.; Gui, X. Metal-organic framework-derived core-shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, Q.; Liu, Z.; Shah, T.; Ahmad, M.; Zhang, Q.; Zhang, B. Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties. Carbon 2021, 182, 484–496. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, M.; Liu, Y.; Tong, Z.; Wang, R.; Chung, K.L.; Ma, A.; Wu, G.; Ma, Y.; He, C.; et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework. J. Colloid Interface Sci. 2021, 600, 209–218. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Li, X.; Zhang, J.; Wang, M.; Che, R. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, G.; Wang, Y.; Ning, M.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Du, Z.; Liu, Y.; Zhang, Q.; Zhao, Z.; Hou, M.; Wang, X.; Hassan, Y.A.; Huang, X.; Yue, J.; et al. Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Compos. Part B Eng. 2023, 249, 110403. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Wan, H.; Li, Z.; Wu, Y.; Yan, H. Electromagnetic wave absorption properties of carbon-encapsulated Co-Cu alloy nanoparticles prepared by gas explosion. Mater. Chem. Phys. 2023, 310, 128486. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, X.; Yan, S.; Ni, C.; Xu, L.; Yu, L.; Li, X. A hierarchical CoNi@nitrogen doped C/macroporous C composite derived from a new bimetallic MOF and Juncus effusus as a broadband electromagnetic wave absorber. J. Alloys Compd. 2023, 944, 169146. [Google Scholar] [CrossRef]
- Wang, H.; Meng, F.; Huang, F.; Jing, C.; Li, Y.; Wei, W.; Zhou, Z. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153. [Google Scholar] [CrossRef]
Absorbers | Matching EAB (GHz) | RLmin (dB) | References |
---|---|---|---|
Cu-S-MOF | 6.72 (9.68–16.4) | −52.8 | [35] |
Co-C composite | 6.1 (14.6–8.5) | −48.5 | [36] |
DM-700-3 | 2.0 (5.0–7.0) | −67.5 | [37] |
CoFe@C | 9.2 (8.8–18.0) | −61.8 | [38] |
Ni-MOF@N-C-500 | 6.8 | −69.6 | [39] |
CNT/FeCoNi@C | 6.0 | −51.7 | [40] |
DM-700 | 4.8 | −65.2 | [41] |
CoZn/C@MoS2@PPy | 4.56 | −49.18 | [42] |
Ni@C@ZnO | 4.1 | −55.8 | [43] |
Co/Co3O4@HCNs | 6.6 | −50.6 | [44] |
CoNi/rGO-2 | 6.8 (10.6–17.4) | −66.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Li, J.; Zhang, Y.; Yang, J.; Wang, T.; Wang, Q. Interface Modulation of CoNi Alloy Decorated with Few-Layer Reduced Graphene Oxide for High-Efficiency Microwave Absorption. Coatings 2024, 14, 228. https://doi.org/10.3390/coatings14020228
Xie H, Li J, Zhang Y, Yang J, Wang T, Wang Q. Interface Modulation of CoNi Alloy Decorated with Few-Layer Reduced Graphene Oxide for High-Efficiency Microwave Absorption. Coatings. 2024; 14(2):228. https://doi.org/10.3390/coatings14020228
Chicago/Turabian StyleXie, Hai, Jinmei Li, Yaoming Zhang, Juan Yang, Tingmei Wang, and Qihua Wang. 2024. "Interface Modulation of CoNi Alloy Decorated with Few-Layer Reduced Graphene Oxide for High-Efficiency Microwave Absorption" Coatings 14, no. 2: 228. https://doi.org/10.3390/coatings14020228