Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Optical Properties
3.2. AFM Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gwóźdź, K.; Płaczek-Popko, E.; Zielony, E.; Gumienny, Z.; Pietruszka, R.; Witkowski, B.S.; Kopalko, K.; Godlewski, M.K. Parametry konwersji fotowoltaicznej dla fotoogniw plazmonicznych na bazie ZnO z nanocząstkami srebra i złota. Przegląd Elektrotechniczny 2016, 9, 38–40. [Google Scholar] [CrossRef]
- Wisz, G.; Sawicka-Chudy, P.; Sibiński, M.; Starowicz, Z.; Płoch, D.; Goral, A.; Bester, M.; Cholewa, M.; Woźny, J.; Sosna-Głębska, A. Solar cells based on copper oxide and titanium dioxide prepared by reactive direct-current magnetron sputtering. Opto-Electron. Rev. 2021, 29, 97–104. [Google Scholar]
- Jacak, W.; Popko, E.; Henrykowski, A.; Zielony, E.; Gwozdz, K.; Luka, G.; Pietruszka, R.; Witkowski, B.; Wachnicki, L.; Godlewski, M.; et al. On the size dependence and spatial range for the plasmon effect in photovoltaic efficiency enhancement. Sol. Energy Mater. Sol. Cells 2016, 147, 1–16. [Google Scholar] [CrossRef]
- Culchac, F.J.; Granada, J.C.; Porras-Montenegro, N. Electron ground state in concentric GaAs-(Ga, Al)As single and double quantum rings. Phys. Status Solidi 2007, 4, 4139–4144. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, Q. Reducing reflection losses in solar cells. In SPIE Newsroom; SPIE: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
- Lin, Q.; Leung, S.-F.; Tsui, K.-H.; Hua, B.; Fan, Z. Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures. Nanoscale Res. Lett. 2013, 8, 268. [Google Scholar] [CrossRef]
- Yeh, L.K.; Lai, K.Y.; Lin, G.J.; Fu, P.H.; Chang, H.C.; Lin, C.A.; He, J.H. Giant efficiency en-hancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays. Adv. Energy Mater. 2011, 1, 506–510. [Google Scholar] [CrossRef]
- Wisz, G.; Sawicka-Chudy, P.; Sibiński, M.; Płoch, D.; Bester, M.; Cholewa, M.; Woźny, J.; Yavorskyi, R.; Nykyruy, L.; Ruszała, M. TiO2/CuO/Cu2O Photovoltaic Nanostructures Prepared by DC Reactive Magnetron Sputtering. Nanomaterials 2022, 12, 1328. [Google Scholar] [CrossRef]
- Wisz, G.; Sawicka-Chudy, P.; Wal, A.; Potera, P.; Bester, M.; Płoch, D.; Sibiński, M.; Cholewa, M.; Ruszała, M. TiO2:ZnO/CuO thin film solar cells prepared via reactive direct-current (DC) magnetron sputtering. Appl. Mater. Today 2022, 29, 101673. [Google Scholar] [CrossRef]
- Yang, Y.; Qing, J.; Ou, J.; Lin, X.; Yuan, Z.; Yu, D.; Zhou, X.; Chen, X. Rational design of metallic nanowire-based plasmonic architectures for efficient inverted polymer solar cells. Sol. Energy 2015, 122, 231–238. [Google Scholar] [CrossRef]
- Oh, Y.; Lim, J.W.; Kim, J.G.; Wang, H.; Kang, B.-H.; Park, Y.W.; Kim, H.; Jang, Y.J.; Kim, J.; Kim, D.H.; et al. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency. ACS Nano 2016, 10, 10143–10151. [Google Scholar] [CrossRef]
- Placzek-Popko, E.; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Pietruszka, R.; Witkowski, B.S.; Wachnicki, Ł.; Gieraltowska, S.; Godlewski, M.; Jacak, W.; et al. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells. J. Appl. Phys. 2015, 117, 193101. [Google Scholar] [CrossRef]
- Mandal, P. Application of Plasmonics in Solar Cell Efficiency Improvement: A Brief Review on Recent Progress. Plasmonics 2022, 17, 1247–1267. [Google Scholar] [CrossRef]
- Parashar, P.K.; Komarala, V.K. Engineered optical properties of sil-ver-aluminum alloy nanoparticles embedded in the SiON matrix for maximizing light diffusion in plasmonic silicon solar cells. Sci. Rep. 2017, 7, 12520. [Google Scholar] [CrossRef]
- Kumawat Kumar, K.; Mishra, S.; Dhawa, A. Plasmonic-enhanced micro-crystalline silicon solar cells. JOSA B 2020, 37, 495–504. [Google Scholar] [CrossRef]
- Mokari, G.; Heidarzadeh, H. Efficiency Enhancement of an Ultra-Thin Silicon Solar Cell Using Plasmonic Coupled Core-Shell Nanoparticles. Plasmonics 2019, 14, 1041–1049. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Peña, T.A.D.; Li, Y.; Zou, X.; Xing, Z.; et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Fong, P.W.K.; Yu, J.; Liu, H.; Yin, J.; Huang, J.; Lu, X.; Yan, H.; Li, G. In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 2022, 15, 2479–2488. [Google Scholar] [CrossRef]
- Luo, Z.; Gao, Y.; Lai, H.; Li, Y.; Wu, Z.; Chen, Z.; Sun, R.; Ren, J.; He, F.; Woo, H.; et al. Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic cou-pling for efficient organic solar cells. Energy Environ. Sci. 2022, 15, 4601–4611. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, M.; Wu, Z.; Fan, B.; Jiang, W.; Cai, N.; Xie, H.; Lin, F.R.; Luo, J.; An, Q.; et al. Intramolecular Chloro–Sulfur Interaction and Asymmetric SideChain Isomeriza-tion to Balance Crystallinity and Miscibility in AllSmall-Molecule Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202205168. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Pique, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D. Transparent thin films of indium tin oxide: Morphology–optical investigations, inter dependence analyzes. Appl. Surf. Sci. 2017, 424, 368–373. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates. Coatings 2018, 9, 19. [Google Scholar] [CrossRef]
- Zhang, J.; Chia, A.C.E.; Lapierre, R.R. Low resistance indium tin oxide contact to n-GaAs nanowires. Semicond. Sci. Technol. 2014, 29, 054002. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Prakash, J.T.J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef]
- Kang, M.; Kim, I.; Chu, M.; Kim, S.W.; Ryu, J.W. Optical Properties of Sputtered Indium-tin-oxide. Thin Film. J. Korean Phys. Soc. 2011, 59, 3280–3283. [Google Scholar] [CrossRef]
- Gwamuri, J.; Marikkannan, M.; Mayandi, J.; Bowen, P.K.; Pearce, J.M. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices. Materials 2016, 9, 63. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, G.; Xu, H.; Jiang, X.; Zhang, X.; Zhao, Y.; Yan, D.; Yuan, L.; Yu, A. Fabrication of Nanopillar Crystalline ITO Thin Films with High Transmittance and IR Reflectance by RF Magnetron Sputtering. Materials 2019, 12, 958. [Google Scholar] [CrossRef]
- Pokaipisit, A.; Horprathum, M.; Limsuwan, P. Effect of Films Thickness on the Properties of ITO Thin Films Prepared by Electron Beam Evaporation. Kasetsart J. (Nat. Sci.) 2007, 41, 255–261. [Google Scholar]
- Mazur, M.; Kaczmarek, D.; Domaradzki, J.; Wojcieszak, D.; Song, S.; Placido, F. Influence of thickness on transparency and sheet resistance of ITO thin films. In Proceedings of the Eighth International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, 25–27 October 2010; pp. 65–68. [Google Scholar]
- Ibrahem, H.; Moghdad, M. Preparation of ITO thin film by Sol-Gel method. Int. J. Electr. Eng. 2013, 1, 18–22. [Google Scholar]
- Cheng, Y.-T.; Lu, T.-L.; Hong, M.-H.; Ho, J.-J.; Chou, C.-C.; Ho, J.; Hsieh, T.-P. Evaluation of Transparent ITO/Nano-Ag/ITO Electrode Grown on Flexible Electrochromic Devices by Roll-to-Roll Sputtering Technology. Coatings 2022, 12, 455. [Google Scholar] [CrossRef]
- Khusayfan, N.M.; El-Nahass, M.M. Study of Structure and Electro-Optical Characteristics of Indium Tin Oxide Thin Films. Adv. Condens. Matter Phys. 2013, 2013, 408182. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Graham, C.; Paulillo, B.; Bi, Y.; Chen, Y.; Herranz, G.; Baker, D.E.; Mazumder, P.; Konstantatos, G.; Pruneri, V. Highly transparent and conductive ITO substrates for near infrared applications. APL Mater. 2021, 9, 021121. [Google Scholar] [CrossRef]
- Her, S.-C.; Chang, C.-F. Fabrication and Characterization of Indium Tin Oxide Films. J. Appl. Biomater. Funct. Mater. 2017, 15, 170–175. [Google Scholar] [CrossRef]
- Saeed, U.; Abdel-Wahab, M.S.; Sajith, V.K.; Ansari, M.S.; Ali, A.M.; Al-Turaif, H.A. Characterization of an amorphous indium tin oxide (ITO) film on a polylactic acid (PLA) substrate. Bull. Mater. Sci. 2019, 42, 175. [Google Scholar] [CrossRef]
- Sofi, A.H.; Shah, M.A.; Asokan, K. Structural, Optical and Electrical Properties of ITO Thin Films. J. Electron. Mater. 2017, 47, 1344–1352. [Google Scholar] [CrossRef]
- Mohamed, S.H.; El-Hossary, F.M.; Gamal, G.A.; Kahlid, M.M. Properties of In-dium Tin Oxide Thin Films Depositedon Polymer Substrates. Acta Phys. Pol. A 2009, 115, 704–708. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci. Mater. Electron. 2016, 27, 11064–11071. [Google Scholar] [CrossRef]
- Hamberg, I.; Granqvist, C.G.; Berggren, K.F.; Sernelius, B.E.; Engström, L. Band-gap widening in heavily Sn-doped In2O3. Phys. Rev. B 1984, 30, 3240–3249. [Google Scholar] [CrossRef]
- Kim, J.; Shrestha, S.; Souri, M.; Connell, J.G.; Park, S.; Seo, A. High-temperature optical properties of indium tin oxide thin-films. Sci. Rep. 2020, 10, 12486. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Characterization of nanostructured TiO2:Ag films: Structural and optical properties. J. Phys. Conf. Ser. 2016, 764, 012019. [Google Scholar] [CrossRef]
- Zhao, C.; Krall, A.; Zhao, H.; Zhang, Q.; Li, Y. Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. Int. J. Hydrog. Energy 2012, 37, 9967–9976. [Google Scholar] [CrossRef]
- Baum, M.; Alexeev, I.; Latzel, M.; Christiansen, S.H.; Schmidt, M. Determination of the effective refractive index of nanoparticulate ITO layers. Opt. Express 2013, 21, 22754–22761. [Google Scholar] [CrossRef] [PubMed]
- Lehmuskero, A.; Kuittinen, M.; Vahimaa, P. Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness. Opt. Express 2007, 15, 10744. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Clavero, C.; Schweigert, D.; Le, M. Thickness and microstructure effects in the optical and electrical properties of silver thin films. AIP Adv. 2015, 5, 117234. [Google Scholar] [CrossRef]
- Amroun, M.N.; Salim, K.; Kacha, A.H.; Khadraoui, M. Effect of TM (TM= Sn, Mn, Al) Doping on the PhysicalProperties of ZnO Thin Films Grown by Spray Pyrol-ysis Technique: A comparative Study. Int. J. Thin. Film. Sci. Technol. 2020, 9, 7–19. [Google Scholar]
- Zhai, C.-H.; Zhang, R.-J.; Chen, X.; Zheng, Y.-X.; Wang, S.-Y.; Liu, J.; Dai, N.; Chen, L.-Y. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition. Nanoscale Res. Lett. 2016, 11, 407. [Google Scholar] [CrossRef]
Sample Name | Dimensions [mm] | Resistance [Ω/sq] | Vendor | Transmittance [%] |
---|---|---|---|---|
ITO1 | 100 × 100 × 1.8 | <15 | Kavio | >85 |
ITO2 | 25 × 75 × 1.0 | <7 | Kavio | >77 |
ITO3 | 25 × 7 × 1.1 | 15–25 | Sigma Aldrich | >78 |
ITO4 | 100 × 100 × 1.1 | 13–16 | 3D-Nano | >85 |
ITO1 | ITO2 | ITO3 | ITO4 | |
---|---|---|---|---|
Thickness of Ag layers [nm] | Eg [eV] | |||
0 | 4.45 | 4.22 | 4.20 | 4.26 |
3 | 4.42 | 4.20 | 4.18 | 4.25 |
5 | 4.42 | 4.20 | 4.19 | 4.25 |
10 | 4.40 | 4.20 | 4.19 | 4.25 |
Samples | RMS Roughness (Sq) [nm] | Mean Roughness (Sa) [nm] | Maximum Peak Heigth (Sp) [nm] | Maximum Pit Depth (Sv) [nm] |
---|---|---|---|---|
ITO1 | 3 | 1 | 68 | 6 |
ITO2 | 3 | 2 | 17 | 17 |
ITO3 | 3 | 2 | 26 | 13 |
ITO4 | 5 | 4 | 39 | 19 |
ITO3 3 nm | 3 | 2 | 20 | 14 |
ITO3 5 nm | 3 | 2 | 13 | 17 |
ITO3 10 nm | 4 | 3 | 43 | 17 |
ITO4 5 nm | 4 | 3 | 18 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisz, G.; Potera, P.; Sawicka-Chudy, P.; Gwóźdź, K. Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications. Coatings 2023, 13, 61. https://doi.org/10.3390/coatings13010061
Wisz G, Potera P, Sawicka-Chudy P, Gwóźdź K. Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications. Coatings. 2023; 13(1):61. https://doi.org/10.3390/coatings13010061
Chicago/Turabian StyleWisz, Grzegorz, Piotr Potera, Paulina Sawicka-Chudy, and Katarzyna Gwóźdź. 2023. "Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications" Coatings 13, no. 1: 61. https://doi.org/10.3390/coatings13010061
APA StyleWisz, G., Potera, P., Sawicka-Chudy, P., & Gwóźdź, K. (2023). Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications. Coatings, 13(1), 61. https://doi.org/10.3390/coatings13010061