Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era
Abstract
:1. Introduction
2. Experimental Design
2.1. Sample Description
2.2. Analysis of Fiber and Pigment
2.3. Analysis of the Adhesive
3. Results and Discussion
3.1. Fiber Analysis
3.2. Pigment Identification
3.3. Analysis of the Adhesive
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olaru, A.; Malutan, T.; Ursescu, C.M.; Geba, M.; Stratulat, L. Structural changes in hemp fibers following temperature, humidity and uv or gamma-ray radiation exposure. Cellul. Chem. Technol. Int. J. Phys. Chem. Technol. Cellul. Lignin. 2016, 50, 31–39. [Google Scholar]
- Karadag, R. Some non-destructive and micro-analytical methods for the conservation on textiles from cultural heritage. In Proceedings of the 19th International Conference on Cultural Heritage and New Technologies 2014 (CHNT 19, 2014), Vienna, Austria, 3–5 November 2014. [Google Scholar]
- Bresee, R.R. General effects of ageing on textiles. J. Am. Inst. Conserv. 1986, 25, 39–48. [Google Scholar] [CrossRef]
- Cybulska, M. Archaeological textiles-a need for new methods of analysis and reconstruction. Fibres Text. Eastern Eur. 2007, 15, 64–65. [Google Scholar] [CrossRef]
- Dilillo, M.; Restivo, A.; Degano, I.; Ribechini, E.; Colombini, M.P. GC/MS investigations of the total lipid fraction of wool: A new approach for modelling the ageing processes induced by iron-gallic dyestuffs on historical and archaeological textiles. Microchem. J. 2015, 118, 131–140. [Google Scholar] [CrossRef]
- Brzozowska, I.; Bogdanowicz, A.; Szczęsny, P.; Zielenkiewicz, U.; Laudy, A. Evaluation of bacterial diversity on historical silk velvet textiles from the Museum of King John III’s Palace at Wilanów, Poland. Int. Biodeterior. Biodegrad. 2018, 131, 78–87. [Google Scholar] [CrossRef]
- Kavkler, K.; Gunde-Cimerman, N.; Zalar, P.; Demšar, A. FTIR spectroscopy of biodegraded historical textiles. Polym. Degrad. Stab. 2011, 96, 574–580. [Google Scholar] [CrossRef]
- Han, J.; Wanrooij, J.; van Bommel, M.; Quye, A. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography–photodiode array–electrospray ionisation mass spectrometer. J. Chromatogr. A 2017, 1479, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, C.; Falletta, G.; Dominicis, B.D.; Baraldi, P. The painted silk panels of palazzo barberini at rome. The scientific investigation and preservation challenge. Proc. Chem. 2013, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; Brokerhof, A.; Ankersmit, B.; van Bommel, M. From the bottom of the sea to the display case: A study into the long-term preservation of archaeological maritime silk textiles in controlled atmosphere. J. Cult. Herit. 2020, 45, 91–100. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Ziddan, Y.; Shehata, A.B. Identification of natural dyes in rare Coptic textile using HPLC-DAD and mass spectroscopy in museum of Faculty of Arts, Alexandria University, Egypt. Dyes Pigments 2017, 145, 486–492. [Google Scholar] [CrossRef]
- Ford, L.; Henderson, R.L.; Rayner, C.M.; Blackburn, R.S. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer’s madder (Rubia tinctorum L.). J. Chromatogr. A 2017, 1487, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Gulmini, M.; Idone, A.; Diana, E.; Gastaldi, D.; Vaudan, D.; Aceto, M. Identification of dyestuffs in historical textiles: Strong and weak points of a non-invasive approach. Dyes Pigments 2013, 98, 136–145. [Google Scholar] [CrossRef]
- Shahid, M.; Wertz, J.; Degano, I.; Aceto, M.; Khan, M.I.; Quye, A. Analytical methods for determination of anthraquinone dyes in historical textiles: A review. Anal. Chim. Acta 2019, 1083, 58–87. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Brizi, L.; Bortolotti, V.; Marmotti, G.; Camaiti, M. Identification of complex structures of paintings on canvas by NMR: Correlation between NMR profile and stratigraphy. Org. Magn. Reson. 2020. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Farwell, D.W.; Brooke, C.J. Raman spectroscopic study of a post-medieval wall painting in need of conservation. Anal. Bioanal. Chem. 2005, 383, 312–321. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B. Study of identification results of proteinous binding agents in Chinese painted cultural relics. J. Cult. Herit. 2020, 43, 73–79. [Google Scholar] [CrossRef]
- Mabrouk, N.; Elsayed, Y. Archaeometrical study of a rare embroidered and appliqued leather tapestry from the safavid artworks. Part II: Colored leather. Mediter. Archaeol. Archaeomet. 2020, 20, 163–171. [Google Scholar] [CrossRef]
- Kavkler, K.; Demšar, A. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 740–746. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, H.-J. Separation of underdeveloped from developed cotton fibers by attenuated total reflection Fourier transform infrared spectroscopy. Microchem. J. 2020, 158, 105152. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, L.; Ding, Q.; Wang, R. Textile fiber identification using near-infrared spectroscopy and pattern recognition. Autex Res. J. 2019, 19, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.G.; da Silva, B.F.P.; de Mattos, L.P.; Escorteganha, M.R.; Ritcher, F.A.; Correia, M.D.D.M.; Siebert, D.A.; Spudeit, D.A.; Micke, G.A. Analysis of the constituent materials of 19th century paintings attributed to Louis-Auguste Moreaux belonging to the Historical Museum of Santa Catarina–Florianópolis, Brazil. Forensic Chem. 2019, 16, 100177. [Google Scholar] [CrossRef]
- Chiavari, G.; Galletti, G.C.; Lanterna, G.; Mazzeo, R. The potential of pyrolysis—Gas chromatography/mass spectrometry in the recognition of ancient painting media. J. Anal. Appl. Pyrol. 1993, 24, 227–242. [Google Scholar] [CrossRef]
- Hao, X.; Wu, H.; Zhao, Y.; Tong, T.; Li, X.; Yang, C.; Tang, Y.; Shen, X.; Liu, S.; Tong, H. Scientific investigation of the lacquered wooden coffin of Xiang Fei excavated from Eastern Royal Tombs of the Qing Dynasty. New J. Chem. 2017, 41, 9806–9814. [Google Scholar] [CrossRef]
- Rosi, F.; Burnstock, A.; Van den Berg, K.J.; Miliani, C.; Brunetti, B.G.; Sgamellotti, A. A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1655–1662. [Google Scholar] [CrossRef]
- Renda, V.; Nardo, V.M.; Anastasio, G.; Caponetti, E.; Vasi, C.; Saladino, M.; Armetta, F.; Trusso, S.; Ponterio, R. A multivariate statistical approach of X-ray fluorescence characterization of a large collection of reverse glass paintings. Spectrochim. Acta Part B At. Spectrosc. 2019, 159. [Google Scholar] [CrossRef]
- Fu, P.; Teri, G.; Li, J.; Huo, Y.; Yang, H.; Li, Y. Analysis of an ancient architectural painting from the Jiangxue Palace in the Imperial Museum, Beijing, China. Anal. Lett. 2020, 54, 684–697. [Google Scholar] [CrossRef]
- Schilling, M.R.; Heginbotham, A.; Van Keulen, H.; Szelewski, M. Beyond the basics: A systematic approach for comprehensive analysis of organic materials in Asian lacquers. Stud. Conserv. 2016, 61, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Ryszard, M.K.; Maria, M.T. Handbook of Natural Fibres (Second Edition): Volume 1: Types, Properties and Factors Affecting Breeding and Cultivation; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Shi, J.-L.; Li, T. Technical investigation of 15th and 19th century Chinese paper currencies: Fiber use and pigment identification. J. Raman Spectrosc. 2013, 44, 892–898. [Google Scholar] [CrossRef]
- Jablonsky, M.; Dubinyova, L.; Varga, S.; Vizarova, K.; Sima, J.; Katuscak, S. Cellulose fiber identification through color vectors of stained fibre. Bioresources 2015, 3, 5845–5862. [Google Scholar]
- Perez-Rodriguez, J.L.; Robador, M.D.; Centeno, M.A.; Siguenza, B.; Duran, A. Wall paintings studied using Raman spectroscopy: A comparative study between various assays of cross sections and external layers. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2014, 120, 602–609. [Google Scholar] [CrossRef]
- Castro, K.; Vandenabeele, P.; Moens, L.; Madariaga, J.M. Micro-Raman analysis of coloured lithographs. Anal. Bioanal. Chem. 2004, 379, 674–683. [Google Scholar] [CrossRef]
- Cheng, X.; Xia, Y.; Ma, Y.; Lei, Y. Three fabricated pigments (Han purple, indigo and emerald green) in ancient Chinese artifacts studied by Raman microscopy, energy-dispersive X-ray spectrometry and polarized light microscopy. J. Raman Spectrosc. 2007, 38, 1274–1279. [Google Scholar] [CrossRef]
- Gautier, G.; Colombini, M.P. GC–MS identification of proteins in wall painting samples: A fast clean-up procedure to remove copper-based pigment interferences. Talanta 2007, 73, 95–102. [Google Scholar] [CrossRef]
- Alruways, M.W.; Elrayah, I.E.; Mansi, M.A. Effect of benzoin resin fumes on indoor environmental microbes. Int. J. Med. Res. Health Sci. 2020, 9, 52–58. [Google Scholar]
Sample No. | Items of Identification |
---|---|
1 | Fiber |
2 | Red pigment |
3 | Black pigment |
4 | Green pigment |
5 | Fiber with adhesive |
Sample | Main Elements % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Al | Si | Hg | S | Na | Mg | K | Cu | As | |
Red pigment | 54.96 | 35 | 2.68 | 2.09 | 3.10 | 2.18 | - | - | - | - | - |
Black pigment | 47.24 | 43.03 | 1.02 | 1.99 | - | 0.68 | 4.92 | 1.13 | - | - | - |
Green pigment | 51.36 | 12.64 | 0.86 | 0.01 | - | - | - | - | 2.22 | 23.78 | 1.05 |
Peak Number | Compound | Formula | Retention Time (min) | Peak Area | Weighted Matching |
---|---|---|---|---|---|
1 | 1H-Pyrrole,3-methyl- | C5H7N | 2.13 | 1,619,417 | 79 |
2 | Trimethyl phosphate | C3H9O4P | 3.32 | 5,793,450 | 99 |
3 | Benzoic acid, methyl ester | C8H8O2 | 4.22 | 1,670,478 | 96 |
4 | Methyl 1-methylpyrrole-2-carboxylate | C7H9NO2 | 4.53 | 178,712 | 91 |
5 | Protein-unverified 8 | - | 5.12 | 1,283,531 | 87 |
6 | Benzaldehyde, 4-methoxy- | C8H8O2 | 5.50 | 1,073,472 | 90 |
7 | Benzoic acid, 4-methoxy-, methyl ester | C8H8O2 | 6.13 | 3,092,956 | 66 |
8 | Schellmannose | - | 6.52 | 13,290,191 | 95 |
9 | 2-Propenoic acid, 3-phenyl-, methyl ester | C10H10O2 | 6.56 | 97,876 | 85 |
10 | Benzaldehyde, 3,4-dimethoxy- | C9H10O3 | 7.09 | 167,455 | 96 |
11 | Starch-unverified 5 | - | 14.489 | 1,868,756 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Xing, H.; Wang, J.; Jia, Z.; Chao, X.; Wang, J.; Liu, J.; Li, Y. Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era. Coatings 2022, 12, 410. https://doi.org/10.3390/coatings12030410
Zhao F, Xing H, Wang J, Jia Z, Chao X, Wang J, Liu J, Li Y. Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era. Coatings. 2022; 12(3):410. https://doi.org/10.3390/coatings12030410
Chicago/Turabian StyleZhao, Fangnan, Huiping Xing, Jianwei Wang, Zhihui Jia, Xiaolian Chao, Juanli Wang, Jiaojiao Liu, and Yuhu Li. 2022. "Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era" Coatings 12, no. 3: 410. https://doi.org/10.3390/coatings12030410
APA StyleZhao, F., Xing, H., Wang, J., Jia, Z., Chao, X., Wang, J., Liu, J., & Li, Y. (2022). Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era. Coatings, 12(3), 410. https://doi.org/10.3390/coatings12030410