Study of the Corrosion Mechanism of Iron-Based Amorphous Composite Coating with Alumina in Sulfate-Reducing Bacteria Solution
Abstract
1. Introduction
2. Materials and Experimental Process
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H.T.; Meyer, V.; Mayrhofer, K.; Hassel, A.W.; Stratmann, M.; Widdel, F. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 2012, 14, 1772–1787. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, M.H.; Lu, F.Y.; Du, C.W.; Li, X.G. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, bacillus cereus, in artificial Beijing soil. Colloids Surf. B Biointerfaces 2021, 197, 111356. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, J.; Jia, R.; Dou, W.; Kumseranee, S.; Punpruk, S.; Li, X.; Gu, T. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros. Sci. 2020, 177, 108993. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Ju, L.-K.; Cheng, G.; Cong, H.; Newby, B.M.Z. Corrosion of aluminum alloy 2024 caused by Aspergillus niger. Int. Biodeterior. Biodegrad. 2016, 115, 1–10. [Google Scholar] [CrossRef]
- Kalnaowakul, P.; Xu, D.; Rodchanarowan, A. Accelerated corrosion of 316L stainless steel caused by Shewanella algae biofilms. ACS Appl. Bio Mater. 2020, 3, 2185–2192. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, S.; Liu, T.; Zhao, Q.; Wang, Y.; Guo, N.; Chang, X.; Liu, T.; Dong, Y.; Yin, Y. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater. Front. Microbiol. 2019, 10, 1111. [Google Scholar] [CrossRef]
- Yang, J.X.; Zhao, P.; Sun, C.; Xu, J. Effect of sulfate-reducing bacteria on the crevice corrosion behavior of Q235 steel. J. Chin. Soc. Corros. Prot. 2012, 32, 54–58. [Google Scholar] [CrossRef]
- Cui, L.Y.; Liu, Z.Y.; Xu, D.K.; Hu, P.; Li, X.G. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization. Corros. Sci. 2020, 174, 108842. [Google Scholar] [CrossRef]
- Castaneda, H.; Benetton, X.D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros. Sci. 2008, 50, 1169–1183. [Google Scholar] [CrossRef]
- Lin, B.L.; Lu, J.T.; Kong, G. Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel. Corros. Sci. 2008, 50, 962–967. [Google Scholar] [CrossRef]
- Kartsonakis, I.; Balaskas, A.; Koumoulos, E.; Charitidis, C.; Kordas, G. Incorporation of ceramic nanocontainers into epoxy coatings for the corrosion protection of hot dip galvanized steel. Corros. Sci. 2012, 57, 30–41. [Google Scholar] [CrossRef]
- Li, Y. Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater. Corros. Sci. 2001, 43, 1793–1800. [Google Scholar] [CrossRef]
- Zhai, X.; Myamina, M.; Duan, J.; Hou, B. Microbial corrosion resistance of galvanized coatings with 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes. Corros. Sci. 2013, 72, 99–107. [Google Scholar] [CrossRef]
- Maia, F.; Silva, A.P.; Fernandes, S.; Cunha, A.; Almeida, A.; Tedim, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 2015, 270, 150–157. [Google Scholar] [CrossRef]
- Zhuk, I.; Jariwala, F.; Attygalle, A.B.; Wu, Y.; Libera, M.R.; Sukhishvili, S.A. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 2014, 8, 7733–7745. [Google Scholar] [CrossRef]
- Taubes, G. The Bacteria Fight Back, American Association for the Advancement of Science. Science 2008, 321, 356–361. [Google Scholar] [CrossRef]
- Chu, Z.; Deng, W.; Zheng, X.; Zhou, Y.; Zhang, C.; Xu, J.; Gao, L. Corrosion Mechanism of Plasma-Sprayed Fe-Based Amorphous Coatings with High Corrosion Resistance. J. Therm. Spray Technol. 2020, 29, 1111–1118. [Google Scholar] [CrossRef]
- Huang, G.; Qu, L.; Lu, Y.; Wang, Y.; Li, H.; Qin, Z.; Lu, X. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating. Vacuum 2018, 153, 39–42. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, Y.J.; Jiao, J.; Wu, Y.X.; Qu, S.J.; Shen, J. Formation and tribological behavior of AC-HVAF-sprayed nonferromagnetic Fe-based amorphous coatings. Surf. Coat. Technol. 2018, 334, 253–260. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, C.; Xv, T.; Wang, C.; Lu, K. Synergistic effect of carbide and amorphous phase on mechanical property and corrosion resistance of laser-clad Fe-based amorphous coatings. Mater. Chem. Phys. 2021, 263, 124407. [Google Scholar] [CrossRef]
- Zhang, C.; Chu, Z.; Wei, F.; Yang, Y.; Dong, Y.; Huang, D.; Wang, L. Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying. Surf. Coat. Technol. 2017, 319, 1–5. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Wang, F.C.; Zhang, H.F.; Liu, Y.B.; Xu, S.H. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf. Coat. Technol. 2009, 204, 563–570. [Google Scholar] [CrossRef]
- Chu, Z.; Zheng, X.; Zhang, C.; Xu, J.; Gao, L. Study the effect of AT13 addition on the properties of AT13/Fe-based amorphous composite coatings. Surf. Coat. Technol. 2019, 379, 125053–125060. [Google Scholar] [CrossRef]
- Chu, Z.; Wei, F.; Zheng, X.; Zhang, C.; Yang, Y. Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying. J. Alloys Compd. 2019, 785, 206–213. [Google Scholar] [CrossRef]
- Ali, N.; Zada, A.; Zahid, M.; Ismail, A.; Rafiq, M.; Riaz, A.; Khan, A. Enhanced photodegradation of methylene blue with alkaline and transition-metal ferrite nanophotocatalysts under direct sun light irradiation. J. Chin. Chem. Soc. 2019, 66, 402–408. [Google Scholar] [CrossRef]
- Yasmeen, H.; Zada, A.; Liu, S. Surface plasmon resonance electron channeled through amorphous aluminum oxide bridged ZnO coupled g-C3N4 significantly promotes charge separation for pollutants degradation under visible light. J. Photochem. Photobiol. A Chem. 2020, 400, 112681. [Google Scholar] [CrossRef]
- Zada, A.; Qu, Y.; Ali, S.; Sun, N.; Lu, H.; Yan, R.; Zhang, X.; Jing, L. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. J. Hazard. Mater. 2018, 342, 715–723. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.F. Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochim. Acta 2017, 253, 368–378. [Google Scholar] [CrossRef]
- Dou, W.; Ru, J.; Peng, J.; Liu, J.; Chen, S.; Gu, T. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros. Sci. 2018, 144, S0010938X17322916. [Google Scholar] [CrossRef]
- Anandkumar, B.; George, R.P.; Maruthamuthu, S.; Parvathavarthini, N.; Mudali, U.K. Corrosion characteristics of sulfate-reducing bacteria (SRB) and the role of molecular biology in SRB studies: An overview. Corros. Rev. 2016, 34, 41–63. [Google Scholar] [CrossRef]
- Marciales, A.; Peralta, Y.; Haile, T.; Crosby, T.; Wolodko, J. Mechanistic microbiologically influenced corrosion modeling—A review. Corros. Sci. 2019, 146, 99–111. [Google Scholar] [CrossRef]
- Gu, T.Y. New Understandings of biocorrosion mechanisms and their classifications. J. Microb. Biochem. Technol. 2012, 4, 3–6. [Google Scholar] [CrossRef]
- Xu, D.K.; Gu, T.Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm. Int. Biodeter. Biodegr. 2014, 91, 74–81. [Google Scholar] [CrossRef]
Coating by HVAF | Parameter |
---|---|
Spray distance (mm) | 180 |
Air pressure (MPa) | 0.54 |
Fuel 1 press (MPa) | 0.48 |
Fuel 2 press (MPa) | 0.26 |
Powder delivery rate (rpm) | 3 |
Content of AT13/wt.% | Ecorr/mV | icorr/A cm−2 | ipass/A cm−2 | Etr/mV | Corrosion Rate/mpy |
---|---|---|---|---|---|
0 | −580 | 5.14 × 10−5 | 5.42 × 10−3 | 867 | 25.06 |
5 | −519 | 7.50 × 10−6 | 6.23 × 10−5 | 905 | 6.47 |
10 | −467 | 5.01 × 10−6 | 1.12 × 10−4 | 993 | 5.49 |
15 | −411 | 1.75 × 10−6 | 5.37 × 10−4 | 1236 | 2.07 |
20 | −430 | 4.06 × 10−6 | 6.94 × 10−4 | 1012 | 4.60 |
Time (day) | Rs (Ω·cm−2) | Rct (Ω·cm−2) | CPEdl | Rf (Ω·cm−2) | CPEf | Goodness of Fit |
---|---|---|---|---|---|---|
0 | 4.56 | 950.1 | 8.58 × 10−4 | / | / | 2.20 × 10−3 |
1 | 5.036 | 402.1 | 2.07 × 10−3 | / | / | 1.13 × 10−3 |
4 | 3.845 | 838.3 | 5.05 × 10−4 | / | / | 1.08 × 10−3 |
10 | 5.026 | 680.4 | 7.94 × 10−4 | / | / | 1.09 × 10−3 |
17 | 4.992 | 177.1 | 8.80 × 10−3 | 588.7 | 3.14 × 10−3 | 3.19 × 10−4 |
24 | 4.492 | 133.4 | 4.23 × 10−4 | 489.8 | 1.46 × 10−3 | 4.04 × 10−5 |
31 | 2.781 | 101.6 | 1.2 × 10−1 | 274.8 | 2.04 × 10−3 | 6.47 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Z.; Shi, H.; Xu, F.; Xu, J.; Zheng, X.; Wang, F.; Zhang, Z.; Hu, Q. Study of the Corrosion Mechanism of Iron-Based Amorphous Composite Coating with Alumina in Sulfate-Reducing Bacteria Solution. Coatings 2022, 12, 1763. https://doi.org/10.3390/coatings12111763
Chu Z, Shi H, Xu F, Xu J, Zheng X, Wang F, Zhang Z, Hu Q. Study of the Corrosion Mechanism of Iron-Based Amorphous Composite Coating with Alumina in Sulfate-Reducing Bacteria Solution. Coatings. 2022; 12(11):1763. https://doi.org/10.3390/coatings12111763
Chicago/Turabian StyleChu, Zhenhua, Haonan Shi, Fa Xu, Jingxiang Xu, Xingwei Zheng, Fang Wang, Zheng Zhang, and Qingsong Hu. 2022. "Study of the Corrosion Mechanism of Iron-Based Amorphous Composite Coating with Alumina in Sulfate-Reducing Bacteria Solution" Coatings 12, no. 11: 1763. https://doi.org/10.3390/coatings12111763
APA StyleChu, Z., Shi, H., Xu, F., Xu, J., Zheng, X., Wang, F., Zhang, Z., & Hu, Q. (2022). Study of the Corrosion Mechanism of Iron-Based Amorphous Composite Coating with Alumina in Sulfate-Reducing Bacteria Solution. Coatings, 12(11), 1763. https://doi.org/10.3390/coatings12111763