Weight Loss during Calcination and Sintering Process of Na0.5Bi0.5TiO3–Bi1/2(Mg2/3Nb1/3)O3 Composite Lead-Free Piezoelectric Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. TGA/DSC of Uncalcined Samples
3.2. XRD of Calcined Samples
3.3. TGA during the Sintering Process
3.4. Frequency Dependence of Relative Permittivity (εr)
3.5. Frequency Dependence of Dielectric Loss (tanδ)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shibata, K.; Wang, R.; Tou, T.; Koruza, J. Applications of lead-free piezoelectric materials. MRS Bull. 2018, 43, 612–616. [Google Scholar] [CrossRef]
- Xie, K.; Hu, H.; Xu, S.; Chen, T.; Huang, Y.; Yang, Y.; Yang, F.; Yao, H. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Waste Manag. 2020, 103, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Tripathi, I.; Tiwari, H. Effects of lead on Environment. Int. J. Emerg. Res. Manag. Technol. 2013, 2, 204–212. [Google Scholar]
- Akça, E.; Yılmaz, H. Lead-free potassium sodium niobate piezoceramics for high-power ultrasonic cutting application: Modelling and prototyping. Process. Appl. Ceram. 2019, 13, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84. [Google Scholar] [CrossRef]
- Shams, S. Circular Economy Policy Barriers: An Analysis of Legislative Challenges in White Goods and Automotive Industry within the EU. Master’s Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden, June 2020. [Google Scholar]
- Lima, A.C.; Pereira, N.; Martins, P.L.A.; Lanceros-Mendez, S. Magnetic materials for magnetoelectric coupling: An unexpected journey. Handb. Magn. Mater. 2020, 29, 57–110. [Google Scholar]
- Smolenskii, G.; Isupov, V. New ferroeleetries of com-plex composition. Soy. Phys. Solid State 1961, 2, 2. [Google Scholar]
- Singha, A.; Praharaj, S.; Rout, D. Effect of sintering time on microstructure and electrical properties of lead-free sodium bismuth titanate perovskite. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, R.; Singh, P. Tailoring the electrical and structural properties of sodium bismuth titanate with sintering temperature. Mater. Today Proc. 2020, 44, 166–169. [Google Scholar] [CrossRef]
- Hiruma, Y.; Nagata, H.; Takenaka, T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 2009, 105, 084112. [Google Scholar] [CrossRef]
- Kimura, T.; Fukuchi, E.; Tani, T. Fabrication of textured bismuth sodium titanate using excess bismuth oxide. Jpn. J. Appl. Phys. 2005, 44, 8055. [Google Scholar] [CrossRef]
- Halim, N.; Majid, W.A.; Velayutham, T. Ferroelectric, pyroelectric and piezoelectric properties of CeO2-doped Na0.5Bi0.5TiO3 ceramics. SN Appl. Sci. 2019, 1, 582. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, X. Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3− Bi(Mg2/3 Nb1/3)O3. J. Mater. Sci. 2008, 43, 1016–1019. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Li, P.; Zhai, J.; Shen, B.; Liu, B. Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J. Eur. Ceram. Soc. 2017, 37, 4585–4595. [Google Scholar] [CrossRef]
- Dong, G.; Fan, H.; Shi, J.; Li, Q. Large strain response with low driving field in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–Bi(Mg2/3Nb1/3)O3 ceramics. J. Am. Ceram. Soc. 2018, 101, 3947–3955. [Google Scholar] [CrossRef]
- Dong, G.; Fan, H.; Jia, Y. Effect of the element ratio in the doping component on the properties of 0.975 (0.8 Bi1/2Na1/2TiO3–0.2 Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics. J. Mater. Res. 2020. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Kong, L.; Yang, H.; Wang, F.; Li, C. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3–Bi (Mg2/3Nb1/3) O3 ceramics. Ceram. Int. 2020, 46, 25392–25398. [Google Scholar] [CrossRef]
- Mishra, P.; Kumar, P. Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J. Alloys Compd. 2012, 545, 210–215. [Google Scholar] [CrossRef]
- Yoon, M.-S.; Khansur, N.H.; Ur, S.-C. The effect of pre-milling/pre-synthesis process and excess Ba on the microstructure and dielectric/piezoelectric properties of nano-sized 0.94 [(Bi0.5Na0.5)TiO3]–0.06 [Ba(1 + x)TiO3]. Ceram. Int. 2010, 36, 1265–1275. [Google Scholar] [CrossRef]
- Chaouchi, A.; Kennour, S.; d’Astorg, S.; Rguiti, M.; Courtois, C.; Marinel, S.; Aliouat, M. Characterization of sol–gel synthesised lead-free (1− x) Na0.5Bi0.5TiO3–xBaTiO3-based ceramics. J. Alloys Compd. 2011, 509, 9138–9143. [Google Scholar] [CrossRef]
- Badapanda, T.; Venkatesan, S.; Panigrahi, S.; Kumar, P. Structure and dielectric properties of bismuth sodium titanate ceramic prepared by auto-combustion technique. Process. Appl. Ceram 2013, 7, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Wang, Q.; Chen, J.; Liu, C.; Fan, L.; Liu, L.; Fang, L.; Xing, X. Enhanced piezoelectric properties of tetragonal (Bi1/2K1/2)TiO3 lead-free ceramics by substitution of pure Bi-based Bi (Mg2/3Nb1/3) O3. J. Am. Ceram. Soc. 2015, 98, 104–108. [Google Scholar] [CrossRef]
- Bhandari, S.; Sinha, N.; Ray, G.; Kumar, B. Processing and properties of ferroelectric Bi0. 5 (Na0.65K0.35)0.5 TiO3 ceramics under the effect of different sintering temperature. Scr. Mater. 2014, 89, 61–64. [Google Scholar] [CrossRef]
- Yoshida, K.; Fujimori, H. Morphotropic Phase Boundary on K-substituted Na0.5Bi0.5TiO3 synthesized with suppressing evaporation of bismuth and sodium. Trans. Mater. Res. Soc. Jpn. 2020, 45, 207–210. [Google Scholar] [CrossRef]
- Amini, R.; Ghazanfari, M.R.; Alizadeh, M.; Ardakani, H.A.; Ghaffari, M. Structural, microstructural and thermal properties of lead-free bismuth–sodium–barium–titanate piezoceramics synthesized by mechanical alloying. Mater. Res. Bull. 2013, 48, 482–486. [Google Scholar] [CrossRef]
- Naceur, H.; Megriche, A.; Maaoui, M.E. Frequency-dependant dielectric characteristics and conductivity behavior of Sr1−x (Na0. 5Bi0.5)xBi2Nb2O9 (x = 0.0, 0.2, 0.5, 0.8 and 1.0) ceramics. Orient. J. Chem. 2013, 29, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Pandey, R.; Singh, P. Polyol-mediated synthesis of Bi-deficient Mg2+-doped sodium bismuth titanate and study of oxide ion migration behaviour with functional properties. J. Alloys Compd. 2020, 860, 158492. [Google Scholar]
- Tsurumi, T.; Harigai, T. Dielectric and Optical Properties of Perovskite Artificial Superlattices, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials; Elsevier: Amsterdam, The Netherlands, 2008; pp. 971–1005. [Google Scholar]
- Bacha, E.; Renoud, R.; Terrisse, H.; Borderon, C.; Richard-Plouet, M.; Gundel, H.; Brohan, L. Electrophoretic deposition of BaTiO3 thin films from stable colloidal aqueous solutions. J. Eur. Ceram. Soc. 2014, 34, 2239–2247. [Google Scholar] [CrossRef]
Batch | Weight Loss due to Moisture | Weight Loss during Crystallization | Weight Loss during Calcination | Total Weight Loss (%) |
---|---|---|---|---|
0BMN | 2.03 | 5.35 | 7.62 | 10.57 |
1BMN | 2.52 | 5 | 7.76 | 12.42 |
3BMN | 3.57 | 7.16 | 10.68 | 16.52 |
5BMN | 3.78 | 3.71 | 6.83 | 12.51 |
Batch | Weight Loss up until Sintering Temperature (%) | Weight Loss/Gain (+) during Sintering (%) |
---|---|---|
0BMN | 2.88 | (+)0.4 |
1BMN | 3.61 | 0.18 |
3BMN | 3.57 | 0.06 |
5BMN | 5.3 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, S.A.; Hussain, F.; Siyal, S.H.; Javed, M.S.; Saleem, M.; Imran, M.; Assiri, M.A.; Bahajjaj, A.A.A.; Ghfar, A.A.; AL-Anazy, M.M.; et al. Weight Loss during Calcination and Sintering Process of Na0.5Bi0.5TiO3–Bi1/2(Mg2/3Nb1/3)O3 Composite Lead-Free Piezoelectric Ceramics. Coatings 2021, 11, 676. https://doi.org/10.3390/coatings11060676
Afzal SA, Hussain F, Siyal SH, Javed MS, Saleem M, Imran M, Assiri MA, Bahajjaj AAA, Ghfar AA, AL-Anazy MM, et al. Weight Loss during Calcination and Sintering Process of Na0.5Bi0.5TiO3–Bi1/2(Mg2/3Nb1/3)O3 Composite Lead-Free Piezoelectric Ceramics. Coatings. 2021; 11(6):676. https://doi.org/10.3390/coatings11060676
Chicago/Turabian StyleAfzal, Syed Ali, Fayaz Hussain, Sajid Hussain Siyal, Muhammad Sufyan Javed, Muhammad Saleem, Muhammad Imran, Mohammed A. Assiri, Aboud Ahmed Awadh Bahajjaj, Ayman A. Ghfar, Murefah Mana AL-Anazy, and et al. 2021. "Weight Loss during Calcination and Sintering Process of Na0.5Bi0.5TiO3–Bi1/2(Mg2/3Nb1/3)O3 Composite Lead-Free Piezoelectric Ceramics" Coatings 11, no. 6: 676. https://doi.org/10.3390/coatings11060676
APA StyleAfzal, S. A., Hussain, F., Siyal, S. H., Javed, M. S., Saleem, M., Imran, M., Assiri, M. A., Bahajjaj, A. A. A., Ghfar, A. A., AL-Anazy, M. M., Ouladsmane, M., Al-Tamrah, S., & Ali, S. (2021). Weight Loss during Calcination and Sintering Process of Na0.5Bi0.5TiO3–Bi1/2(Mg2/3Nb1/3)O3 Composite Lead-Free Piezoelectric Ceramics. Coatings, 11(6), 676. https://doi.org/10.3390/coatings11060676