Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Production
2.3. Characterization Techniques
3. Results and Discussion
3.1. Coatings Microstructure
3.2. Chemical Composition Analysis
3.3. Phase Analysis by X-ray Diffraction
3.4. Martensitic Transformation upon Thermal Cycling
3.5. Functional Properties of Plasma Sprayed NiTi Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Miyazaki, S.; Otsuka, K.; Suzuki, Y. Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy. Scripta Metall. 1981, 15, 287–291. [Google Scholar] [CrossRef]
- Atli, K.C. The effect of tensile deformation on the damping capacity of NiTi Shape memory alloy. J. Alloy. Comp. 2016, 679, 260–267. [Google Scholar] [CrossRef]
- Chluba, C.; Siemsen, K.; Bechtold, C.; Zamponi, C.; Selhuber-Unkel, C.; Quandt, E.; Miranda, R. Lima de. Microfabricated bioelectrodes on self-expanadable NiTi thin film devices for implants and diagnostic instruments. Biosens Bioelectron. 2020, 153, 112034. [Google Scholar] [CrossRef]
- Cui, Z.D.; Man, H.C.; Cheng, F.T.; Yue, T.M. Cavitation erosion-corrosion characteristics of laser surface modified NiTi shape memory alloy. Surf. Coat. Technol. 2003, 162, 147–153. [Google Scholar] [CrossRef]
- Zhou, Q.; Hayat, M.D.; Chen, G.; Cai, S.; Qu, X.; Tang, H.; Cao, P. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties. Mat. Sci. Eng. A 2019, 744, 290–298. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.; Chen, L.; Humbeeck, J.V.; Vleugels, J. Rapid synthesis of dense NiTi alloy through spark plasma sintering of a TiH2/Ni powder mixture. Mater. Lett. 2017, 191, 89–92. [Google Scholar] [CrossRef]
- Novak, P.; Skolakova, A.; Pignol, D.; Prusa, F.; Salvetr, P.; Kubatik, T.F.; Perriere, L.; Karlik, M. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater. Chem. Phys. 2016, 181, 295–300. [Google Scholar] [CrossRef]
- Samal, S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017, 142, 3131–3150. [Google Scholar] [CrossRef]
- Samal, S. Thermal plasma processing of materials: High temperature applications. Ref. Module Mater. Sci. Mater. Eng. 2020. [Google Scholar] [CrossRef]
- Halter, K.; Sickinger, A.; Siegmann, S.; Zysset, L. Thermal Spray Forming of NiTi shape memory alloys. In SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies (SMST), Pacific Grove, CA, USA, 5–8 May 2003; SMST Society: Menlo Park, CA, USA, 2004; pp. 163–172. [Google Scholar]
- Halter, K.; Siegmann, S.; Wielage, B. Vacuum plasma sprayed coatings and freestanding parts of Ni-Ti shape memory alloy. In Proceedings of the International Thermal Spray Conference (ITSC), Essen, Germany, 4–6 March 2002; pp. 357–361. [Google Scholar]
- Klecka, J.; Cizek, J.; Matejicek, J.; Lukac, F.; Zlatnik, R.; Chraska, T. Tailoring the structure of RF-ICP tungsten coatings. Surf. Coat. Technol. 2021, 406, 126745. [Google Scholar] [CrossRef]
- Weiss, Z. Calibration methods in glow discharge optical emission spectroscopy: A tutorial review. J. Anal. At. Spectrom. 2015, 30, 1038–1049. [Google Scholar] [CrossRef]
- Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Cryst. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Hill, R.J.; Howard, C.J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 1987, 20, 467–474. [Google Scholar] [CrossRef]
- Swain, B.; Mallick, P.; Bhuyan, S.K.; Mohapatra, S.S.; Mishra, S.C.; Behera, A. Mechanical properties of NiTi Plasma Spray Coating. J. Therm. Spray Tech. 2020, 29, 741–755. [Google Scholar] [CrossRef]
- Sittner, P.; Sedlak, P.; Seiner, H.; Sedmak, P.; Pilch, J.; Delville, R.; Heller, L.; Kaderavek, L. On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling. Prog. Mater. Sci. 2018, 98, 249–298. [Google Scholar] [CrossRef]
- Samal, S.; de Prado, E.; Tyc, O.; Sittner, P. Shape setting in super-elastic NiTi ribbon. IOP Conf. Mater. Sci. Eng. 2018, 461, 012075. [Google Scholar] [CrossRef]
- Kulkov, S.N.; Mironov, Y.P. Martensitic transformation in NiTi investigated by synchrotron X-ray diffraction. Nucl. Inst. Methods Phys. Res. A 1995, 359, 165–169. [Google Scholar] [CrossRef]
- Prokoshkin, S.D.; Korotitskiy, A.V.; Brailovski, V.; Turenne, S.; Khmelevskaya, I.Y.; Trubitsyna, I.B. On the lattice parameters of phases in binary Ti-Ni shape memory alloys. Acta Mater. 2004, 52, 4479–4492. [Google Scholar] [CrossRef]
- Duwez, P.; Taylor, J.L. The structure of intermediate phases in alloys of titanium with iron, cobalt, and nickel. JOM 1950, 2, 1173–1176. [Google Scholar] [CrossRef]
- Mueller, M.H.; Knott, H.W. The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O. Trans. Amer. Inst. Metall. Eng. 1963, 227, 674–678. [Google Scholar]
- Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kaderavek, L.; Sittner, P. Laser annealing on the surface treatment of thin super elastic NiTi wire. IOP Conf. Mater. Sci. Eng. 2018, 362, 012007. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, W.; Ren, X.; Otsuka, K.; Asai, M. The nature of reversible change in MS temperatures of Ti-Ni alloys with alternating aging. Mater. Trans. Jim. 1999, 40, 1367–1375. [Google Scholar] [CrossRef][Green Version]
- Hiraga, H.; Inoue, T.; Kamado, S.; Kojima, Y.; Matsunawa, A.; Shimura, H. Fabrication of NiTi intermetallic compound made by laser plasma hybrid spraying of mechanically alloyed powders. Surf. Coat. Technol. 2001, 139, 93–100. [Google Scholar] [CrossRef]
- Halter, K.; Sickinger, A.; Zysset, L.; Siegmann, S. Low pressure wire arc and vacuum plasma spraying of NiTi shape memory alloys. In Proceedings of the International Thermal Spray Conference (ITSC), Orlando, FL, USA, 5–8 May 2003; pp. 589–595. [Google Scholar]
- Jardine, A.P.; Field, Y.; Herman, H.; Marantz, D.R.; Kowalsky, K.A. Processing and properties of arc-sprayed shape memory effect NiTi. Scripta Metall. Mater. 1990, 24, 2390–2396. [Google Scholar] [CrossRef]
- Samal, S.; de Prado, E.; Manak, J.; Tyc, O.; Heller, L.; Sittner, P. Internal stresses and plastic strains introduced into surface layers of bent NiTi ribbon by low temperature shape setting. In Proceedings of the International Conference on Shape Memory and Superelastic Technologies (SMST), Konstanz, Germany, 13–17 May 2019; pp. 100–101. [Google Scholar]
- Kotnur, V.G.; Janssen, G.C.A.M. In situ stress measurements and mechanical properties of a composition range of NiTi thin films deposited at elevated temperature. Surf. Coat. Technol. 2012, 211, 167–171. [Google Scholar] [CrossRef]
- Suresh, K.S.; Lahiri, D.; Agarwal, A.; Suwas, S. Microstructure dependent elastic modulus variation in NiTi shape memory alloy. J. Alloys Compd. 2015, 635, 71–74. [Google Scholar] [CrossRef]
- Samal, S.; Molnárová, O.; Průša, F.; Kopeček, J.; Heller, L.; Šittner, P.; Škodová, M.; Abate, L.; Blanco, I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021, 11, 2–16. [Google Scholar]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambrige, UK, 1999; ISBN 9780521663847. [Google Scholar]
- Birk, T.; Biswas, S.; Frenzel, J.; Eggeler, G. Twinning-induced elasticity in NiTi shape memory alloys. Shap. Mem. Superelast. 2016, 2, 145. [Google Scholar] [CrossRef][Green Version]
Sample | Substrate | NiTi Powder | Powder Feed Rate (g/min) | Torch Power (kW) | Coating Thickness (mm) |
---|---|---|---|---|---|
Sample 1 | graphite | Powder 1 | 2.1 | 15 | 0.35 |
Sample 2 | graphite | Powder 1 | 4.1 | 15 | 0.30 |
Sample 3 | AISI 304 | Powder 2 | 4.5 | 12 | 0.50 |
Sample | Ni | Ti |
---|---|---|
Powder 1 | 55.5 | 44.5 |
Powder 2 | 55.5 | 44.5 |
Sample 1 | 51.2 | 48.6 |
Sample 2 | 48.8 | 50.4 |
Sample 3 | 50.5 | 49.5 |
Sample | Austenite | Martensite | NiTi2 |
---|---|---|---|
Powder 1 | 19 | 81 | - |
Powder 2 | 64 | 36 | - |
Sample 1 | 21 | 69 | 10 |
Sample 2 | 35 | 52 | 13 |
Sample 3 | 41 | 48 | - |
Phase Crystal Structure (Space Group) | Austenite Cubic (Fm-3m) | Martensite Monoclinic (P21/m) | NiTi2 Cubic (Fd-3m) | |||
---|---|---|---|---|---|---|
Lattice parameter | a (Å) | a (Å) | b (Å) | c (Å) | β (°) | a (Å) |
Powder 1 | 3.013 | 4.634 | 4.130 | 2.892 | 97.063 | - |
Powder 2 | 3.013 | 4.637 | 4.130 | 2.891 | 97.173 | - |
Sample 1 | 3.016 | 4.649 | 4.124 | 2.900 | 97.400 | 11.380 |
Sample 2 | 3.014 | 4.624 | 4.134 | 2.899 | 97.342 | 11.326 |
Sample 3 | 3.011 | 4.658 | 4.117 | 2.885 | 97.241 | - |
Sample | Austenite | Martensite | ||||
---|---|---|---|---|---|---|
Start | Peak | Finish | Start | Peak | Finish | |
Powder 1 | 38 | 52 | 56 | 27 | 17 | 5 |
Powder 2 | 43 | 52 | 62 | −23 | −33 | −43 |
Sample 1 | 84 | 96 | 103 | 73 | 63 | 53 |
Sample 2 | 66 | 82 | 99 | 64 | 61 | 58 |
Sample 3 | 48 | 73 | 100 | 65 | 60 | 52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samal, S.; Tyc, O.; Cizek, J.; Klecka, J.; Lukáč, F.; Molnárová, O.; de Prado, E.; Weiss, Z.; Kopeček, J.; Heller, L.; et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings 2021, 11, 610. https://doi.org/10.3390/coatings11050610
Samal S, Tyc O, Cizek J, Klecka J, Lukáč F, Molnárová O, de Prado E, Weiss Z, Kopeček J, Heller L, et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021; 11(5):610. https://doi.org/10.3390/coatings11050610
Chicago/Turabian StyleSamal, Sneha, Ondřej Tyc, Jan Cizek, Jakub Klecka, František Lukáč, Orsolya Molnárová, Esther de Prado, Zdeněk Weiss, Jaromír Kopeček, Luděk Heller, and et al. 2021. "Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties" Coatings 11, no. 5: 610. https://doi.org/10.3390/coatings11050610