Smart Phages: Leveraging Artificial Intelligence to Tackle Prosthetic Joint Infections
Abstract
1. Introduction
2. Predicting Phage-Host Interactions
3. Development of Phage Libraries for Rapid Phage Selection
4. Detection of Treatment Resistance
5. Personalization of Treatment
6. Challenges
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PJI | Prosthetic Joint Infection |
ML | Machine Learning |
AI | Artificial Intelligence |
NLP | Natural Language Processing |
AMR | Antimicrobial Resistance |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Shamiah, A.A.; Alomari, R.; Abdel-Razeq, H. Comprehensive assessment of the global burden of antimicrobial resistance: Trends and insights from 2000 to 2023. Am. J. BioMed. 2024, 12, 151–168. [Google Scholar]
- Kurtz, S.M.; Lau, E.C.; Son, M.S.; Chang, E.T.; Zimmerli, W.; Parvizi, J. Are we winning or losing the battle with periprosthetic joint infection? Trends in periprosthetic joint infection and mortality risk for the Medicare population. J. Arthroplast. 2018, 33, 3238–3245. [Google Scholar] [CrossRef]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage therapy in the Postantibiotic era. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef]
- Cisek, A.A.; Dąbrowska, I.; Gregorczyk, K.P.; Wyżewski, Z. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Curr. Microbiol. 2017, 74, 277–283. [Google Scholar] [PubMed]
- Diallo, K.; Dublanchet, A. Benefits of Combined Phage—Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics 2022, 11, 839. [Google Scholar] [CrossRef]
- Stellfox, M.E.; Fernandes, C.; Shields, R.K.; Haidar, G.; Hughes Kramer, K.; Dembinski, E.; Mangalea, M.R.; Arya, G.; Canfield, G.S.; Duerkop, B.A.; et al. Bacteriophage and antibiotic combination therapy for recurrent Enterococcus faecium bloodstream infections. J. Clin. Investig. 2024, 134, e157578. [Google Scholar]
- Loganathan, A.; Bozdogan, B.; Manohar, P.; Nachimuthu, R. Phage-Antibiotic Combinations in Various Treatment Modalities. Front. Pharmacol. 2024, 15, 1356179. [Google Scholar] [CrossRef] [PubMed]
- Doub, J.B.; Ng, V.Y.; Wilson, E.; Corsini, L.; Chan, B.K. Successful treatment of a recalcitrant Staphylococcus epidermidis prosthetic knee infection with intraoperative bacteriophage therapy. Pharmaceuticals 2021, 14, 231. [Google Scholar] [CrossRef]
- Ferry, T.; Leboucher, G.; Fevre, C.; Herry, Y.; Conrad, A.; Josse, J.; Batailler, C.; Chidiac, C.; Medina, M.; Lustig, S.; et al. Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: Is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect. Dis. 2018, 5, ofy269. [Google Scholar] [CrossRef] [PubMed]
- Gibb, B.P.; Hadjiargyrou, M. Bacteriophage therapy for bone and joint infections. Bone Jt. J. 2021, 103, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Onsea, J.; Wagemans, J.; Pirnay, J.; Di Luca, M.; Gonzalez-Moreno, M.; Lavigne, R.; Trampuz, A.; Moriarty, T.; Metsemakers, W.-J. Bacteriophage therapy as a treatment strategy for orthopaedic-device-related infections: Where do we stand? Eur. Cells Mater. 2020, 39, 193–210. [Google Scholar] [CrossRef]
- Akanda, Z.Z.; Taha, M.; Abdelbary, H. Current review: The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J. Orthop. Res. 2018, 36, 1051–1060. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2021. [Google Scholar]
- Boeckaerts, D.; Stock, M.; Ferriol-González, C.; Oteo-Iglesias, J.; Sanjuán, R.; Domingo-Calap, P.; De Baets, B.; Briers, Y. Prediction of Klebsiella phage-host specificity at the strain level. Nat. Commun. 2024, 15, 4355. [Google Scholar] [CrossRef]
- Gaborieau, B.; Vaysset, H.; Tesson, F.; Charachon, I.; Dib, N.; Bernier, J.; Dequidt, T.; Georjon, H.; Clermont, O.; Hersen, P.; et al. Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information. Nat. Microbiol. 2024, 9, 2847–2861. [Google Scholar] [CrossRef] [PubMed]
- Keith, M.; de la Torriente, A.P.; Chalka, A.; Vallejo-Trujillo, A.; McAteer, S.P.; Paterson, G.K.; Low, A.S.; Gally, D.L. Predictive phage therapy for Escherichia coli urinary tract infections: Cocktail selection for therapy based on machine learning models. Proc. Natl. Acad. Sci. USA 2024, 121, e2313574121. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Rajandas, H.; Parimannan, S.; Manickam, R.; Marimuthu, K.; Petersen, B.; Clokie, M.R.J.; Millard, A.; Sicheritz-Pontén, T. PhageLeads: Rapid Assessment of Phage Therapeutic Suitability Using an Ensemble Machine Learning Approach. Viruses 2022, 14, 342. [Google Scholar] [CrossRef]
- Sierra, R.; Roch, M.; Moraz, M.; Prados, J.; Vuilleumier, N.; Emonet, S.; Andrey, D.O. Contributions of Long-Read Sequencing for the Detection of Antimicrobial Resistance. Pathogens 2024, 13, 730. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Martsoukou, M.; Skarmoutsou, N.; Christopoulos, C.; Lada, M.; Velentza, A.; Petropoulou, S.; et al. Using machine learning to predict antimicrobial resistance of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa strains. Stud. Health Technol. Inform. 2021, 281, 43–47. [Google Scholar] [PubMed]
- Pirnay, J.-P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Berghe, E.V.; Green, S.; et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: A multicentre, multinational, retrospective observational study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Chen, Q.; Echterhof, A.; Pennetzdorfer, N.; McBride, R.C.; Banaei, N.; Burgener, E.B.; Milla, C.E.; Bollyky, P.B. A blueprint for broadly effective bacteriophage-antibiotic cocktails against Pseudomonas aeruginosa. Nat. Commun. 2024, 15, 1234. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, N.; Nguyen, A.T.; Rodriguez, E.K.; Young, J. Smart Phages: Leveraging Artificial Intelligence to Tackle Prosthetic Joint Infections. Antibiotics 2025, 14, 949. https://doi.org/10.3390/antibiotics14090949
Mehta N, Nguyen AT, Rodriguez EK, Young J. Smart Phages: Leveraging Artificial Intelligence to Tackle Prosthetic Joint Infections. Antibiotics. 2025; 14(9):949. https://doi.org/10.3390/antibiotics14090949
Chicago/Turabian StyleMehta, Nicita, Andrew T. Nguyen, Edward K. Rodriguez, and Jason Young. 2025. "Smart Phages: Leveraging Artificial Intelligence to Tackle Prosthetic Joint Infections" Antibiotics 14, no. 9: 949. https://doi.org/10.3390/antibiotics14090949
APA StyleMehta, N., Nguyen, A. T., Rodriguez, E. K., & Young, J. (2025). Smart Phages: Leveraging Artificial Intelligence to Tackle Prosthetic Joint Infections. Antibiotics, 14(9), 949. https://doi.org/10.3390/antibiotics14090949