Antifungal Activity of Aniba canelilla (Kunth) Mez Essential Oil and Its Main Compound 1-Nitro-2-Phenylethane against Dermatophytes
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Aniba canelilla Essential Oil (EOAC) and Its Main Compound NP
2.2. Determination of Minimum Inhibitory Concentration
2.3. Mechanism of Action of Aniba canelilla Essential Oil and Its Main Compound
3. Discussion
4. Materials and Methods
4.1. Chemical Constitution of Aniba canelilla Essential Oil and Its Main Compound
4.2. Fungal Strains
4.3. Antifungal Susceptibility Testing by Minimum Inhibitory Concentration
4.4. Mechanism of Action
4.4.1. Ergosterol Binding Assay
4.4.2. Sorbitol Protection Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipner, S.R.; Scher, R.K. Onychomycosis: Current and Investigational Therapies. Cutis 2014, 94, 21–24. [Google Scholar]
- Maskan Bermudez, N.; Rodríguez-Tamez, G.; Perez, S.; Tosti, A. Onychomycosis: Old and New. J. Fungi 2023, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Hajjeh, R.A.; Scher, R.; Konnikov, N.; Gupta, A.K.; Summerbell, R.; Sullivan, S.; Daniel, R.; Krusinski, P.; Fleckman, P.; et al. A Large-Scale North American Study of Fungal Isolates from Nails: The Frequency of Onychomycosis, Fungal Distribution, and Antifungal Susceptibility Patterns. J. Am. Acad. Dermatol. 2000, 43, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Wang, T.; Polla Ravi, S.; Mann, A.; Bamimore, M.A. Global Prevalence of Onychomycosis in General and Special Populations: An Updated Perspective. Mycoses 2024, 67, 1–10. [Google Scholar] [CrossRef]
- Vlahovic, T.C. Onychomycosis: Evaluation, Treatment Options, Managing Recurrence, and Patient Outcomes. Clin. Podiatr. Med. Surg. 2016, 33, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Targhotra, M.; Sahoo, P.K.; Chauhan, M.K. Onychomycosis: Novel Strategies for Treatment. J. Drug Deliv. Sci. Technol. 2020, 57, 101774. [Google Scholar] [CrossRef]
- Sahni, K.; Singh, S.; Dogra, S. Newer Topical Treatments in Skin and Nail Dermatophyte Infections. Indian Dermatol. Online J. 2018, 9, 149–158. [Google Scholar] [CrossRef]
- Murdan, S. Drug Delivery to the Nail Following Topical Application. Int. J. Pharm. 2001, 236, 1–26. [Google Scholar] [CrossRef]
- Taveira, F.S.N.; de Lima, W.N.; Andrade, E.H.A.; Maia, J.G.S. Seasonal Essential Oil Variation of Aniba Canelilla. Biochem. Syst. Ecol. 2003, 31, 69–75. [Google Scholar] [CrossRef]
- Kreutz, T.; Carneiro, S.B.; Soares, K.D.; Limberger, R.P.; Apel, M.A.; Veiga-Junior, V.F.; Koester, L.S. Aniba Canelilla (Kunth) Mez Essential Oil-Loaded Nanoemulsion: Improved Stability of the Main Constituents and in vitro Antichemotactic Activity. Ind. Crops Prod. 2021, 171, 113949. [Google Scholar] [CrossRef]
- Mors, W.B.; Rizzini, C.T.; Pereira, N.A.; DeFilipps, R.A. Medicinal Plants of Brazil; Reference Publications Incorporation: Algonac, MI, USA, 2000; ISBN 0917256425. [Google Scholar]
- Lima, M.d.P.; Fernanades, C.S.; Hanada, R.E.; Silva, J.D.d. Avaliação Química e Das Atividades Antifúngica e Citotóxica de Plantas Tradicionalmente Descritas Como Medicinais. In Proceedings of the XII Jornada de Iniciação Científica do PIBIC/INPAlCNPq.09, Manaus, Brazil, 11 July 2003; pp. 211–212. [Google Scholar]
- Jacinto, A.H.V.L.; Souza, J.V.B.; Lima, E.S.; Cortez, A.C.A.; Cruz, K.S.; Pinheiro, S.B.; Lima, R.Q.; dos S. Geraldi, K.S.C.R. Avaliação Do Potencial Antifúngico de Óleos Essenciais Da Amazônia. In Proceedings of the XI Simpósio Brasileiro de Farmacognosia/XVI Simpósio Latinoamericano de Farmacobotânica, Curitiba, Brazil, 11 August 2017. [Google Scholar]
- Lupe, F.A. Estudo Da Composição Química de Óleos Essenciais de Plantas Aromáticas da Amazônia. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007. [Google Scholar]
- Souza, D.P.; Pimentel, R.B.Q.; Santos, A.S.; Albuquerque, P.M.; Fernandes, A.V.; Junior, S.D.; Oliveira, J.T.A.; Ramos, M.V.; Rathinasabapathi, B.; Gonçalves, J.F.C. Fungicidal Properties and Insights on the Mechanisms of the Action of Volatile Oils from Amazonian Aniba Trees. Ind. Crops Prod. 2020, 143, 111914. [Google Scholar] [CrossRef]
- Giongo, J.L.; Vaucher, R.A.; da Silva, A.S.; Oliveira, C.B.; de Mattos, C.B.; Baldissera, M.D.; Sagrillo, M.R.; Monteiro, S.G.; Custódio, D.L.; Souza de Matos, M.; et al. Trypanocidal Activity of the Compounds Present in Aniba Canelilla Oil against Trypanosoma Evansi and Its Effects on Viability of Lymphocytes. Microb. Pathog. 2017, 103, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R. de A.; do Carmo, D.F.M.; Reis, E.M.; Machado, G.M.C.; Leon, L.L.; da Silva, B.O.; Ferreira, J.L.P.; Amaral, A.C.F. Chemical and Biological Evaluation of Essential Oils with Economic Value from Lauraceae Species. J. Braz. Chem. Soc. 2009, 20, 1071–1076. [Google Scholar] [CrossRef]
- Oger, J.-M.; Richomme, P.; Guinaudeau, H.; Bouchara, J.P.; Fournet, A. Aniba Canelilla (H.B.K.) Mez Essential Oil: Analysis of Chemical Constituents, Fungistatic Properties. J. Essent. Oil Res. 1994, 6, 493–497. [Google Scholar] [CrossRef]
- Mineto, A.R.; de Matos, S.P.; Bordignon, I.M.; Ribeiro, R.; Apel, M.A.; da Veiga-Junior, V.F.; Koester, L.S. Development by Design of Experiment and Validation of a HPLC-UV Method for Simultaneous Quantification of 1-Nitro-2-Phenylethane and Methyleugenol: Application to Nail Permeation/Retention Studies. J. Pharm. Biomed. Anal. 2024, 239, 115889. [Google Scholar] [CrossRef] [PubMed]
- Lipner, S.R.; Scher, R.K. Onychomycosis: Clinical Overview and Diagnosis. J. Am. Acad. Dermatol. 2019, 80, 835–851. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.W.; Fleckman, P.; Huang, J.I. Fungal Nail Infections. J. Hand Surg. Am. 2014, 39, 985–988. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.P.; Luethy, P.M.; Baddley, J.W.; Pappas, P.G. Clinical Utility of Antifungal Susceptibility Testing. JAC-Antimicrob. Resist. 2022, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zangi, M.; Kumar, T.V.N.H.; Shakar Reddy, M.; Reddy, L.V.R.; Sadhukhan, S.K.; Bradley, D.P.; Moreira-Walsh, B.; Edwards, T.C.; O’Dea, A.T.; et al. Synthetic Derivatives of Ciclopirox Are Effective Inhibitors of Cryptococcus Neoformans. ACS Omega 2021, 6, 8477–8487. [Google Scholar] [CrossRef]
- Souza-Junior, F.J.C.; Luz-Moraes, D.; Pereira, F.S.; Barros, M.A.; Fernandes, L.M.P.; Queiroz, L.Y.; Maia, C.F.; Maia, J.G.S.; Fontes-Junior, E.A. Aniba canelilla (Kunth) Mez (Lauraceae): A Review of Ethnobotany, Phytochemical, Antioxidant, Anti-Inflammatory, Cardiovascular, and Neurological Properties. Front. Pharmacol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Brilhante, R.S.N.; Cordeiro, R.A.; Lima, Y.C.; Brasil, N.V.G.P.S.; Monteiro, A.J.; Sidrim, J.J.C.; Rocha, M.F.G. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and o-Methyl Derivatives. Molecules 2011, 16, 6422–6431. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, H.C.; Shukla, P.; Maurya, A.S.; Tripathi, S. Chemical Composition and Antimicrobial Properties of Different Basil Oils. Int. J. Pharm. Sci. Res. 2013, 4, 1210–1216. [Google Scholar]
- Fuentefria, A.M.; Pippi, B.; Dalla Lana, D.F.; Donato, K.K.; de Andrade, S.F. Antifungals Discovery: An Insight into New Strategies to Combat Antifungal Resistance. Lett. Appl. Microbiol. 2018, 66, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, T.; Lucca, L.G.; Loureiro-Paes, O.A.R.; Teixeira, H.F.; Veiga, V.F.; Limberger, R.P.; Ortega, G.G.; Koester, L.S. Optimization, Validation and Application of Headspace Solid-Phase Microextraction Gas Chromatography for the Determination of 1-Nitro-2-Phenylethane and Methyleugenol from Aniba Canelilla (H.B.K.) Mez Essential Oil in Skin Permeation Samples. J. Chromatogr. A 2018, 1564, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Business Media: Carol Stream, IL, USA, 2009; ISBN 978-1-932633-21-4. [Google Scholar]
- CLSI Antifungal Susceptibility Testing of Filamentous Fungi. In CLSI Document M38-A2; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2008; pp. 209–241.
Dermatophytes (n = 9) | EOAC | NP | CPX |
---|---|---|---|
TME 60 | 256 | 221.7 | 2 |
TME 40 | 128 | 110.8 | 2 |
TME 1 | 256 | 221.7 | 1 |
TME 46 | 64 | 27.7 | 1 |
TRU 45 | 32 | 55.4 | 2 |
TRU 51 | 32 | 27.7 | 2 |
TRU 47 | 128 | 110.8 | 1 |
MCA 29 | >256 | >221.7 | 1 |
MCA 38 | 64 | 27.7 | 1 |
Test Substance | Fungi Strains | MIC1 | MIC2 | MIC3 | MIC4 | MIC5 |
---|---|---|---|---|---|---|
EOAC | TRU 45 | 64 | 64 | 128 | 128 | 32 |
TRU 51 | 128 | 256 | 128 | 128 | 64 | |
TME 40 | 128 | 64 | 128 | 64 | 64 | |
TME 60 | 512 | 512 | 512 | 512 | 512 | |
MCA 29 | 512 | 1024 | 1024 | 512 | 1024 | |
MCA 38 | 128 | 64 | 64 | 64 | 64 | |
NP | TRU 45 | 55.4 | 27.7 | 55.4 | 55.4 | 27.7 |
TRU 51 | 110.88 | 110.88 | 55.4 | 55.4 | 27.7 | |
TME 40 | 221.7 | 55.4 | 55.4 | 55.4 | 55.4 | |
TME 60 | 443.5 | 443.5 | >443.5 | 443.5 | 443.5 | |
MCA 29 | 443.5 | 443.5 | 443.5 | 443.5 | 443.5 | |
MCA 38 | 55.4 | 55.4 | 55.4 | 27.7 | 27.7 | |
AFB | TRU 45 | 1 | >8 | >8 | >8 | 8 |
TRU 51 | 0.5 | 1 | >8 | >8 | >8 | |
TME 40 | 0.5 | 1 | 2 | 2 | 1 | |
TME 60 | 1 | 1 | 8 | 8 | 8 | |
MCA 29 | 1 | 1 | >8 | >8 | >8 | |
MCA 38 | 1 | 2 | >8 | >8 | >8 |
Fungi Strains | Readings | EOAC (MIC) | NP (MIC) | MCF (MEC) | |||
---|---|---|---|---|---|---|---|
−/Sorbitol | +/Sorbitol | −/Sorbitol | +/Sorbitol | −/Sorbitol | +/Sorbitol | ||
TRU 45 | Day 4 | 64 | 32 | 110.88 | 110.88 | - | - |
Day 8 | 64 | 32 | 221.7 | 110.88 | 0.015 | 0.250 | |
TRU 51 | Day 4 | 128 | 32 | 110.88 | 55.4 | 0.0625 | 0.031 |
Day 8 | 128 | 64 | 110.88 | 55.4 | - | - | |
TME 40 | Day 4 | 128 | 32 | 55.4 | 27.7 | 0.031 | 0.031 |
Day 8 | 256 | 128 | 55.4 | 27.7 | - | - | |
TME 60 | Day 4 | >512 | >512 | 443.5 | 443.5 | 0.015 | 0.250 |
Day 8 | >512 | >512 | >443.5 | >443.5 | - | - | |
MCA 29 | Day 4 | 512 | 512 | 443.5 | 443.5 | 0.031 | 0.5 |
Day 8 | >512 | 256 | >443.5 | >443.5 | 0.125 | 0.5 | |
MCA 38 | Day 4 | 64 | 32 | 110.88 | 55.4 | - | - |
Day 8 | 64 | 32 | 110.88 | 55.4 | 0.5 | >0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreutz, T.; Duarte, E.O.S.; Quatrin, P.M.; Carneiro, S.B.; Veiga-Junior, V.F.; Fuentefria, A.M.; Koester, L.S. Antifungal Activity of Aniba canelilla (Kunth) Mez Essential Oil and Its Main Compound 1-Nitro-2-Phenylethane against Dermatophytes. Antibiotics 2024, 13, 488. https://doi.org/10.3390/antibiotics13060488
Kreutz T, Duarte EOS, Quatrin PM, Carneiro SB, Veiga-Junior VF, Fuentefria AM, Koester LS. Antifungal Activity of Aniba canelilla (Kunth) Mez Essential Oil and Its Main Compound 1-Nitro-2-Phenylethane against Dermatophytes. Antibiotics. 2024; 13(6):488. https://doi.org/10.3390/antibiotics13060488
Chicago/Turabian StyleKreutz, Tainá, Eliane Oliveira Salines Duarte, Priscilla Maciel Quatrin, Simone Braga Carneiro, Valdir F. Veiga-Junior, Alexandre Meneghello Fuentefria, and Letícia S. Koester. 2024. "Antifungal Activity of Aniba canelilla (Kunth) Mez Essential Oil and Its Main Compound 1-Nitro-2-Phenylethane against Dermatophytes" Antibiotics 13, no. 6: 488. https://doi.org/10.3390/antibiotics13060488
APA StyleKreutz, T., Duarte, E. O. S., Quatrin, P. M., Carneiro, S. B., Veiga-Junior, V. F., Fuentefria, A. M., & Koester, L. S. (2024). Antifungal Activity of Aniba canelilla (Kunth) Mez Essential Oil and Its Main Compound 1-Nitro-2-Phenylethane against Dermatophytes. Antibiotics, 13(6), 488. https://doi.org/10.3390/antibiotics13060488