Target Attainment and Population Pharmacokinetics of Cefazolin in Patients with Invasive Staphylococcus aureus Infections: A Prospective Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Pharmacological Data
2.3. Pharmacological Target Attainment
2.4. Excessive Cefazolin Concentrations and Potential Toxicity
2.5. Population Pharmacokinetics
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Patient Selection and Management
4.3. Identification of Staphylococcus aureus and MIC Determination
4.4. Plasma Sampling and Drug Assay
4.5. Outcome
4.6. Assessment of Potential Toxicity
4.7. Modeling
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul-Aziz, M.H.; Alffenaar, J.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Osthoff, M.; Siegemund, M.; Balestra, G.; Abdul-Aziz, M.H.; Roberts, J.A. Prolonged administration of beta-lactam antibiotics-a comprehensive review and critical appraisal. Swiss Med. Wkly. 2016, 146, w14368. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; McWhinney, B.; Ally, M.; Ungerer, J.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of b-lactam antibiotics in the critically ill: Direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018, 73, 3087–3094. [Google Scholar] [CrossRef]
- Moser, S.; Rehm, S.; Guertler, N.; Hinic, V.; Drager, S.; Bassetti, S.; Rentsch, K.M.; Sendi, P.; Osthoff, M. Probability of pharmacological target attainment with flucloxacillin in Staphylococcus aureus bloodstream infection: A prospective cohort study of unbound plasma and individual MICs. J. Antimicrob. Chemother. 2021, 76, 1845–1854. [Google Scholar] [CrossRef]
- Paul, M.; Zemer-Wassercug, N.; Talker, O.; Lishtzinsky, Y.; Lev, B.; Samra, Z.; Leibovici, L.; Bishara, J. Are all beta-lactams similarly effective in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia? Clin. Microbiol. Infect. 2011, 17, 1581–1586. [Google Scholar] [CrossRef]
- Loubet, P.; Burdet, C.; Vindrios, W.; Grall, N.; Wolff, M.; Yazdanpanah, Y.; Andremont, A.; Duval, X.; Lescure, F.X. Cefazolin versus anti-staphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteraemia: A narrative review. Clin. Microbiol. Infect. 2018, 24, 125–132. [Google Scholar] [CrossRef]
- Vella-Brincat, J.W.; Begg, E.J.; Kirkpatrick, C.M.; Zhang, M.; Chambers, S.T.; Gallagher, K. Protein binding of cefazolin is saturable in vivo both between and within patients. Br. J. Clin. Pharmacol. 2007, 63, 753–757. [Google Scholar] [CrossRef]
- Bergan, T.; Brodwall, E.K.; Orjavik, O. Pharmacokinetics of cefazolin patients with normal and impaired renal function. J. Antimicrob. Chemother. 1977, 3, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Musteata, F.M. Calculation of normalized drug concentrations in the presence of altered plasma protein binding. Clin. Pharmacokinet. 2012, 51, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Naik, B.I.; Roger, C.; Ikeda, K.; Todorovic, M.S.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Comparative total and unbound pharmacokinetics of cefazolin administered by bolus versus continuous infusion in patients undergoing major surgery: A randomized controlled trial. Br. J. Anaesth. 2017, 118, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.; Natsume, Y.; Uchiyama, K.; Ikeda, S.; Tomoda, Y.; Takayama, Y.; Takaso, M.; Hanaki, H.; Atsuda, K. Population Pharmacokinetic and Pharmacodynamic Target Attainment Analysis of Cefazolin in the Serum and Hip Joint Capsule of Patients Undergoing Total Hip Arthroplasty. Antimicrob. Agents Chemother. 2021, 65, e02114-20. [Google Scholar] [CrossRef]
- Asada, M.; Nagata, M.; Mizuno, T.; Uchida, T.; Takahashi, H.; Makita, K.; Arai, H.; Kijima, S.; Echizen, H.; Yasuhara, M. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass in adult patients undergoing cardiac surgery. Eur. J. Clin. Pharmacol. 2021, 77, 735–745. [Google Scholar] [CrossRef]
- Chung, E.K.; Cheatham, S.C.; Healy, D.P.; Stock, A.H.; Utley, S.; Campion, M.; Murrey, T.; Gesenhues, A.M.; Jeffery, J.; Kays, M.B. Population pharmacokinetics and pharmacodynamics of cefazolin using total and unbound serum concentrations in patients with high body weight. Int. J. Antimicrob. Agents 2023, 61, 106751. [Google Scholar] [CrossRef]
- Campbell, P.O.; Chin, P.K.L.; Dalton, S.C.; Metcalf, S.C.L.; Douglas, N.M.; Chambers, S.T. Frequency of pharmacological target attainment with flucloxacillin and cefazolin in invasive methicillin-susceptible Staphylococcus aureus infection: A prospective cohort study in hospitalized patients. Int. J. Antimicrob. Agents 2023, 61, 106695. [Google Scholar] [CrossRef]
- McLachlan, A.J. Sparse drug concentration data analysis using a population approach: A valuable tool in clinical pharmacology. Clin. Exp. Pharmacol. Physiol. 1996, 23, 995–999. [Google Scholar] [CrossRef]
- Hughes, J.H.; Long-Boyle, J.; Keizer, R.J. Maximum a posteriori Bayesian methods out-perform non-compartmental analysis for busulfan precision dosing. J. Pharmacokinet. Pharmacodyn. 2024, 51, 279–288. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; Adnan, S.; McWhinney, B.; Ungerer, J.; Lipman, J.; Roberts, J.A. Protein binding of beta-lactam antibiotics in critically ill patients: Can we successfully predict unbound concentrations? Antimicrob. Agents Chemother. 2013, 57, 6165–6170. [Google Scholar] [CrossRef]
- Komatsu, T.; Kawai, Y.; Takayama, Y.; Akamada, Y.; Kusume, E.; Ikeda, M.; Tsumura, H.; Ishii, D.; Iwamura, M.; Okamoto, H.; et al. Population pharmacokinetics and pharmacodynamic target attainment analysis of cefazolin using total and unbound serum concentration in patients with prostatectomy or nephrectomy. Antimicrob. Agents Chemother. 2024, 68, e0026724. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef] [PubMed]
- Salvador, E.; Oualha, M.; Bille, E.; Beranger, A.; Moulin, F.; Benaboud, S.; Boujaafar, S.; Gana, I.; Urien, S.; Zheng, Y.; et al. Population pharmacokinetics of cefazolin in critically ill children infected with methicillin-sensitive Staphylococcus aureus. Clin. Microbiol. Infect. 2021, 27, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Bellouard, R.; Deschanvres, C.; Deslandes, G.; Dailly, E.; Asseray, N.; Jolliet, P.; Boutoille, D.; Gaborit, B.; Gregoire, M. Population Pharmacokinetic Study of Cefazolin Dosage Adaptation in Bacteremia and Infective Endocarditis Based on a Nomogram. Antimicrob. Agents Chemother. 2019, 63, e00806-19. [Google Scholar] [CrossRef]
- Roberts, J.A.; Udy, A.A.; Jarrett, P.; Wallis, S.C.; Hope, W.W.; Sharma, R.; Kirkpatrick, C.M.; Kruger, P.S.; Roberts, M.S.; Lipman, J. Plasma and target-site subcutaneous tissue population pharmacokinetics and dosing simulations of cefazolin in post-trauma critically ill patients. J. Antimicrob. Chemother. 2015, 70, 1495–1502. [Google Scholar] [CrossRef]
- Rehm, S.; Rentsch, K.M. LC-MS/MS method for nine different antibiotics. Clin. Chim. Acta 2020, 511, 360–367. [Google Scholar] [CrossRef]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of beta-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622–627. [Google Scholar] [CrossRef]
Variable | N (%) or Median (IQR) |
---|---|
Female | 13 (25.5) |
Age (years) | 74.1 (56.6–81.8) |
BMI (kg/m2) | 24.5 (21.8–29.6) |
Weight (kg) | 73 (67–93) |
Comorbidities | |
Cardiovascular disease | 24 (47.1) |
Chronic lung disease | 11 (21.6) |
Diabetes mellitus | 11 (21.6) |
Heart failure (NYHA II–IV) | 11 (21.6) |
Chronic kidney disease, stage G3 | 5 (9.8) |
Chronic kidney disease, stage G4 | 5 (9.8) |
Malignancies | 5 (9.8) |
IV drug use | 5 (9.8) |
Liver cirrhosis | 3 (5.9) |
Charlson comorbidity score | 5 (2–7) |
Disease severity | at onset of infection |
Pitt bacteremia score | 0 (0–1) |
SOFA score | 1 (1–3) |
Bloodstream infection | 39 (76.5) |
Laboratory results | at onset of infection |
C-reactive protein (mg/L) | 157 (56–239) |
White blood cells (106/L) | 14.0 (10.8–17.2) |
Creatinine (µmol/L) | 81 (69–131) |
eGFR (mL/min/1.7 m2) | 76 (41–91) |
Albumin (g/L) | 29.0 (24.0–32.8) |
Focus of infection | |
Catheter or prosthetic material | 13 (25.5) |
Osteomyelitis or septic arthritis | 10 (19.6) |
Endocarditis | 10 (19.6) |
Skin and soft tissue | 9 (17.6) |
Respiratory tract | 2 (3.9) |
Intra-abdominal | 1 (2.0) |
Other | 6 (11.8) |
Severity and clinical outcome | |
Vasoactive treatment | 3 (5.9) |
ICU admission | 10 (19.6) |
ICU LOS in days | 5 (3–14) |
Hospital length of stay in days | 20 (16–38) |
30-day mortality rate | 3 (5.9) |
Cefazolin Concentration | Study Day 1 | Study Day 3 | Study Day 7 | Study Day 14 | ||
---|---|---|---|---|---|---|
Mid-dose (n = 50) | Trough (n = 47) | Mid-dose (n = 46) | Trough (n = 42) | Trough (n = 28) | Trough (n = 13) | |
Total in mg/L, median (IQR) | 51.6 (31.1–87.2) | 26.4 (11.4–41.9) | 56.0 (29.8–85.0) | 32.2 (12.3–54.0) | 22.7 (11.6–39.8) | 24.5 (18.2–43.1) |
Unbound fraction, %, mean (SD) | 28.0 (12.3) | 26.1 (12.3) | 28.1 (12.4) | 27.0 (15.7) | 25.6 (15.2) | 25 (14.6) |
Measured unbound concentration in mg/L, median (IQR) | 12.1 (6.0–23.1) | 5.4 (2.1–11.4) | 15.5 (5.7–29.5) | 6.6 (2.2–13.8) | 4.6 (2.0–14.3) | 5.6 (3.7–16.2) |
Estimated unbound concentration in mg/L *, median (IQR) | 10.3 (6.2–17.4) | 5.3 (2.3–8.4) | 11.2 (6.0–17.0) | 6.4 (2.5–10.8) | 4.5 (2.3–8.0) | 4.9 (3.6–8.6) |
Pharmacological Target | Study Day 1 | Study Day 3 | Study Day 7 | Study Day 14 | Cumulative | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cefazolin MIC | ECOFF | Cefazolin MIC | ECOFF | Cefazolin MIC | ECOFF | Cefazolin MIC | ECOFF | Cefazolin MIC | ECOFF | |
≥50% ƒT>MIC, n (%) | 49 (98) | 47 (94) | 46 (100) | 44 (96) | 50/51 (98) | 48/51 (94) | ||||
≥50% ƒT>4xMIC, n (%) | 44 (88) | 34 (68) | 37 (80) | 30 (65) | 41/51 (80) | 33/51 (65) | ||||
100% ƒT>MIC, n (%) | 43 (91) | 36 (77) | 37 (88) | 32 (76) | 24 (86) | 20 (71) | 12 (92) | 12 (92) | 44/51 (86) | 36/51 (71) |
100% ƒT>4xMIC, n (%) | 29 (62) | 20 (43) | 28 (67) | 18 (43) | 15 (54) | 9 (32) | 7 (54) | 5 (38) | 23/51 (45) | 15/51 (29) |
100% ƒT>10xECOFF, n (%) | 7 (15) | 6 (14) | 3 (11) | 2 (15) | 9/51 (18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bausch, S.; Dräger, S.; Charitos-Fragkakis, P.; Egli, A.; Moser, S.; Hinic, V.; Kuehl, R.; Bassetti, S.; Siegemund, M.; Rentsch, K.M.; et al. Target Attainment and Population Pharmacokinetics of Cefazolin in Patients with Invasive Staphylococcus aureus Infections: A Prospective Cohort Study. Antibiotics 2024, 13, 928. https://doi.org/10.3390/antibiotics13100928
Bausch S, Dräger S, Charitos-Fragkakis P, Egli A, Moser S, Hinic V, Kuehl R, Bassetti S, Siegemund M, Rentsch KM, et al. Target Attainment and Population Pharmacokinetics of Cefazolin in Patients with Invasive Staphylococcus aureus Infections: A Prospective Cohort Study. Antibiotics. 2024; 13(10):928. https://doi.org/10.3390/antibiotics13100928
Chicago/Turabian StyleBausch, Severin, Sarah Dräger, Panteleimon Charitos-Fragkakis, Adrian Egli, Stephan Moser, Vladimira Hinic, Richard Kuehl, Stefano Bassetti, Martin Siegemund, Katharina M. Rentsch, and et al. 2024. "Target Attainment and Population Pharmacokinetics of Cefazolin in Patients with Invasive Staphylococcus aureus Infections: A Prospective Cohort Study" Antibiotics 13, no. 10: 928. https://doi.org/10.3390/antibiotics13100928
APA StyleBausch, S., Dräger, S., Charitos-Fragkakis, P., Egli, A., Moser, S., Hinic, V., Kuehl, R., Bassetti, S., Siegemund, M., Rentsch, K. M., Hermann, L., Schöning, V., Hammann, F., Sendi, P., & Osthoff, M. (2024). Target Attainment and Population Pharmacokinetics of Cefazolin in Patients with Invasive Staphylococcus aureus Infections: A Prospective Cohort Study. Antibiotics, 13(10), 928. https://doi.org/10.3390/antibiotics13100928