Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms
Abstract
:1. Introduction
2. Results
2.1. Farms and Samples
2.2. Staphylococcus spp. Isolation, Characterization and Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Farms, Traps, Insects Collection and Processing
4.2. Staphylococcus spp. Isolation
4.3. Antimicrobial Susceptibility Tests
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7, GPP3-0060-2019. [Google Scholar] [CrossRef] [PubMed]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-negative staphylococci pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, C.; Ziebuhr, W.; Becker, K. Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 2019, 25, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Poku, E.; Cooper, K.; Cantrell, A.; Harnan, S.; Sin, M.A.; Zanuzdana, A.; Hoffmann, A. Systematic review of time lag between antibiotic use and rise of resistant pathogens among hospitalized adults in Europe. JAC-Antimicrob. Resist. 2023, 5, dlad001. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef]
- Becker, K.; Ballhausen, B.; Köck, R.; Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol. 2014, 304, 794–804. [Google Scholar] [CrossRef]
- Al-Haqan, A.; Boswihi, S.S.; Pathan, S.; Udo, E.E. Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates. PLoS ONE 2020, 15, e0236713. [Google Scholar] [CrossRef]
- Chon, J.W.; Lee, U.J.; Bensen, R.; West, S.; Paredes, A.; Lim, J.; Khan, S.; Hart, M.E.; Phillips, K.S.; Sung, K. Virulence characteristics of mecA-positive multidrug-resistant clinical coagulase-negative staphylococci. Microorganisms 2020, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti. Infect. Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Caniça, M.; Ferreira, E.; Vieira-Pinto, M.; Saraiva, C.; Pereira, J.E.; Capelo, J.L.; Igrejas, G.; Poeta, P. Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Poultry Slaughtered for Human Consumption. Antibiotics 2022, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Marek, A.; Stepień-Pyśniak, D.; Pyzik, E.; Adaszek, Ł.; Wilczyński, J.; Winiarczyk, S. Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland. Berl. Munch. Tierarztl. Wochenschr. 2016, 129, 147–152. [Google Scholar]
- Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of methicillin-resistant coagulase-negative staphylococci (MRCoNS) and methicillin-resistant Staphylococcus aureus (MRSA) from pigs and farm environment in northwestern italy. Antibiotics 2021, 10, 676. [Google Scholar] [CrossRef]
- Moreno-Flores, A.; Potel-Alvarellos, C.; Francisco-Tomé, M.; Constenla-Caramés, L.; Pérez-Roth, E.; López-Cotón, C.; Comesaña-Da Vila, E.; Eiroa-de la Puente, L.; Álvarez-Fernández, M. Methicillin-resistant Staphylococcus aureus in swine housed indoors in Galicia, Spain. Enferm. Infecc. Microbiol. Clin. 2020, 38, 16–20. [Google Scholar] [CrossRef]
- Randad, P.R.; Larsen, J.; Kaya, H.; Pisanic, N.; Ordak, C.; Price, L.B.; Aziz, M.; Nadimpalli, M.L.; Rhodes, S.; Stewart, J.R.; et al. Transmission of Antimicrobial-Resistant Staphylococcus aureus Clonal Complex 9 between Pigs and Humans, United States. Emerg. Infect. Dis. 2021, 27, 740–748. [Google Scholar] [CrossRef]
- Chen, C.; Wu, F. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonization and infection among livestock workers and veterinarians: A systematic review and meta-analysis. Occup. Environ. Med. 2021, 78, 530–540. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Muisa-Zikali, N.; Teta, C.; Musvuugwa, T.; Rzymski, P.; Abia, A.L.K. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics 2021, 10, 68. [Google Scholar] [CrossRef]
- Fukuda, A.; Usui, M.; Okamura, M.; Dong-Liang, H.; Tamura, Y. Role of flies in the maintenance of antimicrobial resistance in farm environments. Microb. Drug Resist. 2019, 25, 127–132. [Google Scholar] [CrossRef]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Hathcock, T.; Butaye, P.; Kang, Y.; Price, S.; Macklin, K.; Walz, P.; Cattley, R.; Kalalah, A.; Adekanmbi, F.; et al. Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in houseflies and blowflies from farms and their environmental settings. Int. J. Environ. Res. Public Health 2019, 16, 3583. [Google Scholar] [CrossRef] [Green Version]
- Akter, S.; Sabuj, A.A.M.; Haque, Z.F.; Rahman, M.T.; Kafi, M.A.; Saha, S. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet. World 2020, 13, 266. [Google Scholar] [CrossRef]
- Stelder, J.J.; Kjær, L.J.; Jensen, L.B.; Boklund, A.E.; Denwood, M.; Carlsen, M.; Bødker, R. Livestock-associated MRSA survival on house flies (Musca domestica) and stable flies (Stomoxys calcitrans) after removal from a Danish pig farm. Sci. Rep. 2021, 11, 3527. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Bresciani, F.; Cagnoli, G.; Scotti, B.; Lazzerini, L.; Marcucci, M.; Colombani, G.; Bilei, S.; Bossù, T.; Marchis, M.L.D.; et al. House flies (Musca domestica) from swine and poultry farms carrying antimicrobial resistant Enterobacteriaceae and Salmonella. Vet. Sci. 2023, 10, 118. [Google Scholar] [CrossRef]
- Sobur, M.A.; Islam, M.S.; Haque, Z.F.; Orubu, E.S.F.; Toniolo, A.; Choudhury, M.A.; Rahman, M.T. Higher seasonal temperature enhances the occurrence of methicillin resistance of Staphylococcus aureus in house flies (Musca domestica) under hospital and environmental settings. Folia Microbiol. 2022, 67, 109–119. [Google Scholar] [CrossRef]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Nazari, M.; Mahrabi, T.; Hosseini, S.M.; Alikhani, M.Y. Bacterial contamination of adult house flies (Musca domestica) and sensitivity of these bacteria to various antibiotics, captured from Hamadan City, Iran. J. Clin. Diagn. Res. 2017, 11, DC04. [Google Scholar] [CrossRef]
- Odetoyin, B.; Adeola, B.; Olaniran, O. Frequency and antimicrobial resistance patterns of bacterial species isolated from the body surface of the housefly (Musca domestica) in Akure, Ondo State, Nigeria. J. Arthropod. Borne. Dis. 2020, 14, 88. [Google Scholar] [CrossRef] [Green Version]
- Sudagidan, M.; Ozalp, V.C.; Can, Ö.; Eligül, H.; Yurt, M.N.Z.; Tasbasi, B.B.; Acar, E.E.; Kavruk, M.; Koçak, O. Surface microbiota and associated staphylococci of houseflies (Musca domestica) collected from different environmental sources. Microb. Pathog. 2022, 164, 105439. [Google Scholar] [CrossRef]
- Nomura, R.; Nakaminami, H.; Takasao, K.; Muramatsu, S.; Kato, Y.; Wajima, T.; Noguchi, N. A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J. Glob. Antimicrob. Resist. 2020, 22, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)—A more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T. Molecular Characterization of equine Staphylococcus aureus isolates exhibiting reduced oxacillin susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Appelbaum, P.C.; Bozdogan, B. Vancomycin resistance in Staphylococcus aureus. Clin. Lab. Med. 2004, 24, 381–402. [Google Scholar] [CrossRef]
- Ashagrie, D.; Genet, C.; Abera, B. Vancomycin-resistant enterococci and coagulase-negative staphylococci prevalence among patients attending at Felege Hiwot Comprehensive Specialized Hospital, Bahir Dar, Ethiopia. PLoS ONE 2021, 16, e0249823. [Google Scholar] [CrossRef]
- Al-Tamimi, M.; Abu-Raideh, J.; Himsawi, N.; Khasawneh, A.; Hawamdeh, H. Methicillin and vancomycin resistance in coagulase-negative Staphylococci isolated from the nostrils of hospitalized patients. J. Infect. Dev. Ctries. 2020, 14, 28–35. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Min, B.R.; Castleberry, L.; Waldrip, H.; Parker, D.; Brauer, D.; Pitta, D.; Indugu, N. Antibiotic resistance, antimicrobial residues, and bacterial community diversity in pasture-raised poultry, swine, and beef cattle manures. J. Anim. Sci. 2021, 99, skab144. [Google Scholar] [CrossRef]
- De Jong, A.; El Garch, F.; Hocquet, D.; Prenger-Berninghoff, E.; Dewulf, J.; Migura-Garcia, L.; Perrin-Guyomard, A.; Veldman, K.T.; Janosi, S.; Skarzynska, M.; et al. European-wide antimicrobial resistance monitoring in commensal Escherichia coli isolated from healthy food animals between 2004 and 2018. J. Antimicrob. Chemother. 2022, 77, 3301–3311. [Google Scholar] [CrossRef]
- Osorio, V.; Sabater i Mezquita, A.; Balcázar, J.L. Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance. Environ. Pollut. 2023, 322, 121239. [Google Scholar] [CrossRef]
- CLSI, (Clinical and Laboratory Standards Institute). M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests, 12th ed.; Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; pp. 1–96. [Google Scholar]
- CLSI, (Clinical and Laboratory Standards Institute). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI, (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- EUCAST, (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 13.0; The European Committee on Antimicrobial Susceptibility Testing: Basel, Switzerland, 2023. [Google Scholar]
- Cuny, C.; Layer, F.; Strommenger, B.; Witte, W. Rare Occurrence of Methicillin-Resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS ONE 2011, 6, e24360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Farms | Farmed Animals | Traps ID | Number of Positive Traps to Staphylococcus spp. | Positive Samples to Staphylococcus spp. | ||
---|---|---|---|---|---|---|
A | B | C | ||||
1 | Poultry | 1 | 2/2 | + | + | + |
2 | + | − | − | |||
2 | Swine | 3 | 0/1 | − | − | − |
3 | Swine | 4 | 1/1 | + | + | − |
4 | Poultry | 5 | 1/1 | + | + | + |
5 | Poultry | 6 | 1/2 | − | − | − |
7 | + | + | + | |||
6 | Poultry | 8 | 0/1 | − | − | − |
7 | Poultry | 9 | 1/1 | + | − | − |
8 | Swine | 10 | 2/2 | + | + | − |
11 | + | − | + | |||
9 | Swine | 12 | 1/1 | − | + | − |
10 | Swine | 13 | 1/1 | − | − | + |
11 | Poultry | 14 | 2/2 | + | + | + |
15 | − | − | + | |||
12 | Swine | 16 | 0/1 | − | − | − |
13 | Swine | 17 | 1/2 | − | − | − |
18 | + | + | − | |||
14 | Swine | 19 | 0/1 | − | − | − |
15 | Swine | 20 | 1/1 | + | + | + |
16 | Swine | 21 | 0/1 | − | − | − |
17 | Poultry | 22 | 1/1 | + | + | + |
18 | Swine | 23 | 3/3 | − | − | + |
24 | + | + | − | |||
25 | − | + | − | |||
19 | Swine | 26 | 0/2 | − | − | − |
27 | − | − | − | |||
20 | Swine | 28 | 2/2 | − | + | + |
29 | + | + | − | |||
21 | Swine | 30 | 2/3 | − | − | + |
31 | − | − | − | |||
32 | + | + | + | |||
22 | Swine | 33 | 1/3 | − | − | − |
34 | − | − | − | |||
35 | + | + | + |
Antimicrobial | Susceptible | Intermediate | Resistant | |||
---|---|---|---|---|---|---|
N° of Isolates | % | N° of Isolates | % | N° of Isolates | % | |
Ampicillin | 26 | 53.06 | 0 | 0.00 | 23 | 46.94 |
Amoxicillin-clavulanate | 42 | 85.71 | 0 | 0.00 | 7 | 14.29 |
Cefoxitin | 29 | 59.18 | 0 | 0.00 | 20 | 40.82 |
Ceftiofur | 32 | 65.31 | 4 | 8.16 | 13 | 26.53 |
Chloramphenicol | 37 | 75.51 | 4 | 8.16 | 8 | 16.33 |
Tetracycline | 25 | 51.02 | 4 | 8.16 | 20 | 40.82 |
Enrofloxacin | 25 | 51.02 | 16 | 32.65 | 8 | 16.33 |
Ciprofloxacin | 34 | 69.39 | 8 | 16.33 | 7 | 14.29 |
Gentamicin | 34 | 69.39 | 2 | 4.08 | 13 | 26.53 |
Amikacin | 17 | 34.69 | 0 | 0.00 | 32 | 65.31 |
Trimethoprim-sulfamethoxazole | 35 | 71.43 | 3 | 6.12 | 11 | 22.45 |
Erythromycin | 8 | 16.33 | 22 | 44.90 | 19 | 38.78 |
Rifampicin | 21 | 42.86 | 6 | 12.24 | 22 | 44.90 |
Isolate Number | Farm | Farmed Animal | Traps ID | Sample Type | Species | Antimicrobial Resistance Profile |
---|---|---|---|---|---|---|
01Aa | 1 | Poultry | 1 | A | S. xylosus | AMP AMC FOX EFT TE ENR CIP CN AK E |
01Ab | 1 | Poultry | 1 | A | S. lentus | AMP AMC EFT TE ENR AK SXT E RD |
01B | 1 | Poultry | 1 | B | S. xylosus | AMP EFT TE ENR CIP CN AK E RD |
01C | 1 | Poultry | 1 | C | S. epidermidis | AMP FOX EFT ENR CIP CN AK RD |
02A | 1 | Poultry | 2 | A | S. warneri | AMP AMC FOX EFT TE CN AK SXT E RD |
04A | 3 | Swine | 4 | A | S. epidermidis | AMP AMC FOX EFT C CN AK E RD * |
04B | 3 | Swine | 4 | B | S. epidermidis | AMP FOX EFT C TE CIP CN AK E RD * |
05A | 4 | Poultry | 5 | A | S. lentus | EFT TE AK SXT E RD |
05B | 4 | Poultry | 5 | B | S. saprophyticus | AMP FOX C TE CN AK SXT E RD |
05C | 4 | Poultry | 5 | C | S. haemolyticus | AMP EFT TE ENR CN AK RD |
07A | 5 | Poultry | 7 | A | S. epidermidis | AMP AMC FOX EFT C TE ENR CIP CN AK * |
07B | 5 | Poultry | 7 | B | S. epidermidis | AMP AMC AK SXT E RD |
07C | 5 | Poultry | 7 | C | S. epidermidis | AMP FOX C TE ENR CIP CN AK SXT E * |
09A | 7 | Poultry | 9 | A | S. lentus | TE CN AK E RD |
10Ab | 8 | Swine | 10 | A | S. xylosus | C TE E |
10B | 8 | Swine | 10 | B | S. epidermidis | AMP ENR CIP CN AK SXT RD |
12B | 9 | Swine | 12 | B | S. xylosus | AMP EFT TE E RD |
13C | 10 | Swine | 13 | C | S. chonii ssp. urealyticus | AMP FOX EFT TE CN AK SXT ERD |
14A | 11 | Poultry | 14 | A | S. chonii ssp. urealyticus | AMP AK E |
18B | 13 | Swine | 18 | B | S. sciuri | AMP AK RD |
22B | 17 | Poultry | 22 | B | S. haemolyticus | AK SXT RD |
22C | 17 | Poultry | 22 | C | S. haemolyticus | FOX TE AK SXT RD |
23C | 18 | Swine | 23 | C | S. xylosus | AMP AMC C TE E RD |
24B | 18 | Swine | 24 | B | S. xylosus | AMP E RD |
28C | 20 | Swine | 28 | C | S. epidermidis | AMP FOX EFT AK RD |
30C | 21 | Swine | 30 | C | S. xylosus | AMP AK E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertelloni, F.; Cagnoli, G.; Bresciani, F.; Scotti, B.; Lazzerini, L.; Marcucci, M.; Colombani, G.; Ebani, V.V. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms. Antibiotics 2023, 12, 636. https://doi.org/10.3390/antibiotics12040636
Bertelloni F, Cagnoli G, Bresciani F, Scotti B, Lazzerini L, Marcucci M, Colombani G, Ebani VV. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms. Antibiotics. 2023; 12(4):636. https://doi.org/10.3390/antibiotics12040636
Chicago/Turabian StyleBertelloni, Fabrizio, Giulia Cagnoli, Flavio Bresciani, Bruno Scotti, Luca Lazzerini, Marco Marcucci, Giuseppe Colombani, and Valentina Virginia Ebani. 2023. "Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms" Antibiotics 12, no. 4: 636. https://doi.org/10.3390/antibiotics12040636
APA StyleBertelloni, F., Cagnoli, G., Bresciani, F., Scotti, B., Lazzerini, L., Marcucci, M., Colombani, G., & Ebani, V. V. (2023). Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms. Antibiotics, 12(4), 636. https://doi.org/10.3390/antibiotics12040636