Factors Associated with Antimicrobial Use in Fijian Livestock Farms
Abstract
:1. Introduction
2. Results
2.1. Livestock Farm Model
2.1.1. Characteristics of Fijian Livestock Farmers and Farms
2.1.2. Livestock Farm Modelling
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Collection
4.2. Data Management and Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Factor | Total | Antimicrobial Use | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | Anthelmintics | Both | No AMU | ||||||||
n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | ||
Participant type | |||||||||||
Farmer | 211 | (89) | 51 | (89) | 35 | (97) | 44 | (92) | 81 | (85) | 0.231 |
Farm manager | 25 | (11) | 6 | (11) | 1 | (3) | 4 | (8) | 14 | (15) | |
Division | |||||||||||
Central | 93 | (39) | 27 | (47) | 12 | (33) | 25 | (52) | 29 | (31) | 0.038 |
Western | 143 | (61) | 30 | (53) | 24 | (67) | 23 | (48) | 66 | (69) | |
Province | |||||||||||
Naitasiri | 26 | (11) | 8 | (14) | 6 | (17) | 7 | (15) | 5 | (5) | 0.001 |
Namosi | 13 | (6) | 2 | (4) | 1 | (3) | 2 | (4) | 8 | (8) | |
Rewa | 13 | (6) | 5 | (9) | 1 | (3) | 0 | (0) | 7 | (7) | |
Serua | 19 | (8) | 5 | (9) | 4 | (11) | 6 | (13) | 4 | (4) | |
Tailevu | 22 | (9) | 7 | (12) | 0 | (0) | 10 | (21) | 5 | (5) | |
Ba | 84 | (36) | 15 | (26) | 14 | (39) | 21 | (44) | 34 | (36) | |
Nadroga-Navosa | 28 | (12) | 5 | (9) | 8 | (22) | 2 | (4) | 13 | (14) | |
Ra | 31 | (13) | 10 | (18) | 2 | (6) | 0 | (0) | 19 | (20) | |
Age | |||||||||||
10–19 years | 1 | (0) | 0 | (0) | 1 | (3) | 0 | (0) | 0 | (0) | 0.293 |
20–39 years | 49 | (21) | 11 | (19) | 7 | (19) | 6 | (13) | 25 | (26) | |
40–59 years | 120 | (51) | 27 | (47) | 20 | (56) | 27 | (56) | 46 | (48) | |
Over 60 years | 66 | (28) | 19 | (33) | 8 | (22) | 15 | (31) | 24 | (25) | |
Gender | |||||||||||
Male | 198 | (84) | 48 | (84) | 34 | (94) | 44 | (92) | 72 | (76) | 0.021 |
Female | 38 | (16) | 9 | (16) | 2 | (6) | 4 | (8) | 23 | (24) | |
Education level | |||||||||||
Primary | 31 | (13) | 10 | (18) | 7 | (19) | 3 | (6) | 11 | (12) | 0.850 |
Secondary | 142 | (60) | 30 | (53) | 19 | (53) | 31 | (65) | 62 | (65) | |
Tertiary | 39 | (17) | 10 | (18) | 6 | (17) | 9 | (19) | 14 | (15) | |
Agricultural College | 21 | (9) | 6 | (11) | 4 | (11) | 4 | (8) | 7 | (7) | |
Never Attended | 3 | (1) | 1 | (2) | 0 | (0) | 1 | (2) | 1 | (1) | |
Income from farming | |||||||||||
≤25% | 71 | (30) | 13 | (23) | 11 | (31) | 12 | (25) | 35 | (37) | 0.213 |
25–50% | 94 | (40) | 21 | (37) | 12 | (33) | 21 | (44) | 40 | (42) | |
51–75% | 30 | (13) | 10 | (18) | 8 | (22) | 6 | (13) | 6 | (6) | |
≥76% | 41 | (17) | 13 | (23) | 5 | (14) | 9 | (19) | 14 | (15) | |
Household income > GDP (Gross Domestic Product) per capita in Fiji | |||||||||||
Yes | 85 | (36) | 23 | (40) | 14 | (39) | 19 | (40) | 29 | (31) | 0.552 |
No | 151 | (64) | 34 | (60) | 22 | (61) | 29 | (60) | 66 | (69) | |
Association memberships | |||||||||||
Yes | 60 | (25) | 10 | (18) | 14 | (39) | 22 | (46) | 14 | (15) | <0.001 |
No | 176 | (75) | 47 | (82) | 22 | (61) | 26 | (54) | 81 | (85) | |
Farm ownership | |||||||||||
Individual | 32 | (14) | 14 | (25) | 4 | (11) | 8 | (17) | 6 | (6) | 0.106 |
Household | 162 | (69) | 30 | (53) | 27 | (75) | 33 | (69) | 72 | (76) | |
Company | 32 | (14) | 10 | (18) | 3 | (8) | 6 | (13) | 13 | (14) | |
Cooperative | 7 | (3) | 1 | (2) | 2 | (6) | 1 | (2) | 3 | (3) | |
Contract farming | 3 | (1) | 2 | (4) | 0 | (0) | 0 | (0) | 1 | (1) | |
Farm tenure | |||||||||||
Freehold | 45 | (19) | 15 | (26) | 4 | (11) | 7 | (15) | 19 | (20) | 0.336 |
Crown Lease | 31 | (13) | 8 | (14) | 4 | (11) | 8 | (17) | 11 | (12) | |
Agriculture Leased | 43 | (18) | 14 | (25) | 6 | (17) | 5 | (10) | 18 | (19) | |
TLTB Leased | 63 | (27) | 11 | (19) | 12 | (33) | 19 | (40) | 21 | (22) | |
Mataqali | 44 | (19) | 8 | (14) | 8 | (22) | 6 | (13) | 22 | (23) | |
Squatter | 2 | (1) | 0 | (0) | 1 | (3) | 1 | (2) | 0 | (0) | |
Commercial leased | 8 | (3) | 1 | (2) | 1 | (3) | 2 | (4) | 4 | (4) | |
Farm size | |||||||||||
Small holder (<2 ha) | 51 | (22) | 14 | (25) | 2 | (6) | 3 | (6) | 32 | (34) | <0.001 |
Medium-large holder (>2 ha) | 185 | (78) | 43 | (75) | 34 | (94) | 45 | (94) | 63 | (66) | |
Farming systems | |||||||||||
Backyard | 27 | (11) | 8 | (14) | 2 | (6) | 3 | (6) | 14 | (15) | 0.430 |
Semi commercial | 144 | (61) | 30 | (53) | 23 | (64) | 33 | (69) | 58 | (61) | |
Commercial | 65 | (28) | 19 | (33) | 11 | (31) | 12 | (25) | 23 | (24) | |
Production type | |||||||||||
Organic | 101 | (43) | 24 | (42) | 14 | (39) | 21 | (44) | 42 | (44) | 0.302 |
Conventional | 70 | (30) | 22 | (39) | 7 | (19) | 13 | (27) | 28 | (29) | |
Prefer not to comment | 65 | (28) | 11 | (19) | 15 | (42) | 14 | (29) | 25 | (26) | |
Farming type | |||||||||||
Livestock only | 162 | (69) | 39 | (68) | 20 | (56) | 36 | (75) | 67 | (71) | 0.270 |
Mixed (Crop and Livestock) | 74 | (31) | 18 | (32) | 16 | (44) | 12 | (25) | 28 | (29) | |
Years in operation | |||||||||||
<5 years | 67 | (28) | 19 | (33) | 4 | (11) | 5 | (10) | 39 | (41) | <0.001 |
5–10 years | 68 | (29) | 17 | (30) | 8 | (22) | 15 | (31) | 28 | (29) | |
>10 years | 101 | (43) | 21 | (37) | 24 | (67) | 28 | (58) | 28 | (29) | |
Employees | |||||||||||
0 | 134 | (57) | 34 | (60) | 21 | (58) | 22 | (46) | 57 | (60) | 0.309 |
<2 | 25 | (11) | 7 | (12) | 5 | (14) | 8 | (17) | 5 | (5) | |
>2 | 77 | (33) | 16 | (28) | 10 | (28) | 18 | (38) | 33 | (35) | |
Enterprise type | |||||||||||
Beef only | 57 | (24) | 10 | (18) | 17 | (47) | 8 | (17) | 57 | (24) | <0.001 |
Dairy only | 52 | (22) | 9 | (16) | 11 | (31) | 29 | (60) | 52 | (22) | |
Beef and dairy | 11 | (5) | 0 | (0) | 2 | (6) | 4 | (8) | 11 | (5) | |
Layer only | 50 | (21) | 13 | (23) | 3 | (8) | 2 | (4) | 50 | (21) | |
Broiler only | 38 | (16) | 18 | (32) | 0 | (0) | 1 | (2) | 38 | (16) | |
Broiler and layer | 12 | (5) | 4 | (7) | 0 | (0) | 1 | (2) | 12 | (5) | |
Mixed cattle and poultry | 16 | (7) | 3 | (5) | 3 | (8) | 3 | (6) | 16 | (7) | |
Flock/herd size | |||||||||||
Small-medium | 171 | (72) | 38 | (67) | 25 | (69) | 36 | (75) | 72 | (76) | 0.614 |
Large | 65 | (28) | 19 | (33) | 11 | (31) | 12 | (25) | 23 | (24) | |
Fencing | |||||||||||
Yes | 133 | (56) | 28 | (49) | 24 | (67) | 36 | (75) | 45 | (47) | 0.005 |
No | 103 | (44) | 29 | (51) | 12 | (33) | 12 | (25) | 50 | (53) | |
Animal housing | |||||||||||
Yes | 150 | (64) | 43 | (75) | 13 | (36) | 22 | (46) | 72 | (76) | <0.001 |
No | 86 | (36) | 14 | (25) | 23 | (64) | 26 | (54) | 23 | (24) | |
Para-veterinarian farm visits | |||||||||||
No visits | 118 | (50) | 21 | (37) | 14 | (39) | 20 | (42) | 63 | (66) | 0.004 |
quarterly | 74 | (31) | 20 | (35) | 15 | (42) | 19 | (40) | 20 | (21) | |
monthly | 44 | (19) | 16 | (28) | 7 | (19) | 9 | (19) | 12 | (13) | |
Veterinarian farm visits | |||||||||||
No visits | 223 | (94) | 46 | (81) | 35 | (97) | 48 | (100) | 94 | (99) | <0.001 |
quarterly | 4 | (2) | 2 | (4) | 1 | (3) | 0 | (0) | 1 | (1) | |
monthly | 9 | (4) | 9 | (16) | 0 | (0) | 0 | (0) | 0 | (0) | |
Farm records | |||||||||||
Yes | 122 | (52) | 28 | (49) | 23 | (64) | 24 | (50) | 47 | (49) | 0.469 |
No | 114 | (48) | 29 | (51) | 13 | (36) | 24 | (50) | 48 | (51) | |
AMU records | |||||||||||
Yes | 38 | (16) | 16 | (28) | 8 | (22) | 4 | (8) | 10 | (11) | 0.010 |
No | 198 | (84) | 41 | (72) | 28 | (78) | 44 | (92) | 85 | (89) | |
Feed milling on farm | |||||||||||
Yes | 16 | (7) | 1 | (2) | 3 | (8) | 3 | (6) | 9 | (9) | |
No | 220 | (93) | 56 | (98) | 33 | (92) | 45 | (94) | 86 | (91) | 0.317 |
Medicated feed used | |||||||||||
Not used | 125 | (53) | 22 | (39) | 32 | (89) | 35 | (73) | 36 | (38) | <0.001 |
Used | 111 | (47) | 35 | (61) | 4 | (11) | 13 | (27) | 59 | (62) | |
Feed supplements | |||||||||||
Not used | 202 | (86) | 53 | (93) | 30 | (83) | 27 | (56) | 92 | (97) | <0.001 |
Used | 34 | (14) | 4 | (7) | 6 | (17) | 21 | (44) | 3 | (3) | |
Antiprotozoal | |||||||||||
Not used | 229 | (97) | 55 | (96) | 36 | (100) | 46 | (96) | 92 | (97) | 0.703 |
Used | 7 | (3) | 2 | (4) | 0 | (0) | 2 | (4) | 3 | (3) | |
Herbal preparations | |||||||||||
Not used | 211 | (89) | 50 | (88) | 34 | (94) | 45 | (94) | 82 | (86) | 0.384 |
Used | 25 | (11) | 7 | (12) | 2 | (6) | 3 | (6) | 13 | (14) | |
Vitamins and minerals | |||||||||||
Not used | 114 | (48) | 33 | (58) | 14 | (39) | 19 | (40) | 48 | (51) | 0.170 |
Used | 122 | (52) | 24 | (42) | 22 | (61) | 29 | (60) | 47 | (49) | |
Vaccines | |||||||||||
Not used | 225 | (95) | 54 | (95) | 36 | (100) | 46 | (96) | 89 | (94) | 0.490 |
Used | 11 | (5) | 3 | (5) | 0 | (0) | 2 | (4) | 6 | (6) | |
Antiseptics and disinfectants | |||||||||||
Not used | 193 | (82) | 44 | (77) | 30 | (83) | 31 | (65) | 88 | (93) | <0.001 |
Used | 43 | (18) | 13 | (23) | 6 | (17) | 17 | (35) | 7 | (7) | |
Agricultural compounds (herbicides and pesticides) | |||||||||||
Not used | 232 | (98) | 57 | (100) | 35 | (97) | 47 | (98) | 93 | (98) | 0.711 |
Used | 4 | (2) | 0 | (0) | 1 | (3) | 1 | (2) | 2 | (2) |
References
- OIE. Antimicrobial Resistance. Available online: http://www.oie.int/en/for-the-media/amr/ (accessed on 10 January 2022).
- WHO; FAO; OIE. Taking a Multisectoral, One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries. Available online: http://www.fao.org/ag/againfo/resources/en/publications/TZG/TZG.htm (accessed on 5 January 2022).
- WHO. Antimicrobial Resistance. Available online: http://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 January 2022).
- Krishnasamy, V.; Otte, J.; Silbergeld, E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob. Resist. Infect. Control 2015, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, E.; Jakobsen, E.B. Challenging the myth of the irrational dairy farmer; understanding decision-making related to herd health. N. Z. Vet. J. 2011, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Loi, F.; Laddomada, A.; Coccollone, A.; Marrocu, E.; Piseddu, T.; Masala, G.; Bandino, E.; Cappai, S.; Rolesu, S. Socio-economic factors as indicators for various animal diseases in Sardinia. PLoS ONE 2019, 14, e0217367. [Google Scholar] [CrossRef]
- Woodhill, J.; Hasnain, S.; Griffith, A. Farmers and Food Systems: What Future for Small Scale Agriculture? Available online: https://www.foresight4food.net/wp-content/uploads/2020/01/Farming-food-WEB.pdf (accessed on 10 January 2022).
- Martey, E.; Etwire, P.M.; Wiredu, A.N.; Ahiabor, B.D.K. Establishing the link between market orientation and agricultural commercialization: Empirical evidence from Northern Ghana. Food Secur. 2017, 9, 849–866. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behaviour: Reactions and reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Jones, P.J.; Marier, E.A.; Tranter, R.B.; Wu, G.; Watson, E.; Teale, C.J. Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Prev. Vet. Med. 2015, 121, 30–40. [Google Scholar] [CrossRef]
- Alawneh, J.I.; Barnes, T.S.; Parke, C.; Lapuz, E.; David, E.; Basinang, V.; Baluyut, A.; Villar, E.; Lopez, E.L.; Blackall, P.J. Description of the pig production systems, biosecurity practices and herd health providers in two provinces with high swine density in the Philippines. Prev. Vet. Med. 2014, 114, 73–87. [Google Scholar] [CrossRef]
- Williams, L.J.; van Wensveen, M.; Dahlanuddin; Grünbühel, C.M.; Puspadi, K. Adoption as adaptation: Household decision making and changing rural livelihoods in Lombok, Indonesia. J. Rural Stud. 2022, 89, 328–336. [Google Scholar] [CrossRef]
- Lekagul, A.; Tangcharoensathien, V.; Liverani, M.; Mills, A.; Rushton, J.; Yeung, S. Understanding antibiotic use for pig farming in Thailand: A qualitative study. Antimicrob. Resist. Infect. Control 2021, 10. [Google Scholar] [CrossRef]
- Raj Singh, S.; Kumar Datta, K.; Singh Shekhawat, S. Importance of Socio-Economic and Institutional Factors in the Use of Veterinary Services by the Smallholder Dairy Farmers in Punjab. In Veterinary Medicine and Pharmaceuticals; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Om, C.; McLaws, M.L. Antibiotics: Practice and opinions of Cambodian commercial farmers, animal feed retailers and veterinarians. Antimicrob. Resist. Infect. Control 2016, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Madden, T.J. Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. J. Exp. Soc. Psychol. 1986, 22, 453–474. [Google Scholar] [CrossRef]
- MOA. 2018 GDP Release. Available online: https://agriculture.gov.fj/stats.php (accessed on 10 January 2022).
- Fiji Agriculture Census. Available online: https://www.agriculture.gov.fj/documents/census/VOLUMEI_DESCRIPTIVEANALYSISANDGENERALTABLEREPORT.pdf (accessed on 15 July 2020).
- Loftus, M.; Stewardson, A.J.; Naidu, R.; Coghlan, B.; Jenney, A.; Kepas, J.; Lavu, E.; Munamua, A.; Peel, T.; Sahai, V.; et al. Antimicrobial resistance in the Pacific Island countries and territories. BMJ Global Health 2020, 5, e002418. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Acharya, K.P.; Karki, S.; Shrestha, K.; Kaphle, K. One health approach in Nepal: Scope, opportunities and challenges. One Health 2019, 8, 100101. [Google Scholar] [CrossRef]
- Kiambi, S.; Mwanza, R.; Sirma, A.; Czerniak, C.; Kimani, T.; Kabali, E.; Dorado-Garcia, A.; Eckford, S.; Price, C.; Gikonyo, S.; et al. Understanding Antimicrobial Use Contexts in the Poultry Sector: Challenges for Small-Scale Layer Farms in Kenya. Antibiotics 2021, 10, 106. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Benavides, J.A.; Streicker, D.G.; Gonzales, M.S.; Rojas-Paniagua, E.; Shiva, C. Knowledge and use of antibiotics among low-income small-scale farmers of Peru. Prev. Vet. Med. 2021, 189, 105287. [Google Scholar] [CrossRef]
- Dankar, I.; Hassan, H.; Serhan, M. Knowledge, attitudes, and perceptions of dairy farmers regarding antibiotic use: Lessons from a developing country. J. Dairy Sci. 2022, 105, 1519–1532. [Google Scholar] [CrossRef]
- Redding, L.E.; Brooks, C.; Georgakakos, C.B.; Habing, G.; Rosenkrantz, L.; Dahlstrom, M.; Plummer, P.J. Addressing Individual Values to Impact Prudent Antimicrobial Prescribing in Animal Agriculture. Front. Vet. Sci. 2020, 7, 297. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Yoo, D.; Lee, K.; Chun, B.-C.; Lee, H.; Park, H.; Kim, J. Preventive effect of on-farm biosecurity practices against highly pathogenic avian influenza (HPAI) H5N6 infection on commercial layer farms in the Republic of Korea during the 2016-17 epidemic: A case-control study. Prev. Vet. Med. 2022, 199, 105556. [Google Scholar] [CrossRef]
- Cuong, N.V.; Phu, D.H.; Van, N.T.B.; Dinh Truong, B.; Kiet, B.T.; Hien, B.V.; Thu, H.T.V.; Choisy, M.; Padungtod, P.; Thwaites, G.; et al. High-Resolution Monitoring of Antimicrobial Consumption in Vietnamese Small-Scale Chicken Farms Highlights Discrepancies Between Study Metrics. Front. Vet. Sci. 2019, 6, 174. [Google Scholar] [CrossRef] [Green Version]
- Alhaji, N.B.; Aliyu, M.B.; Ghali-Mohammed, I.; Odetokun, I.A. Survey on antimicrobial usage in local dairy cows in North-central Nigeria: Drivers for misuse and public health threats. PLoS ONE 2019, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hosain, M.Z.; Kabir, S.M.L.; Kamal, M.M. Antimicrobial uses for livestock production in developing countries. Vet. World 2021, 14, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.Y.I. Foodborne infections in the Middle East. In Food Safety in the Middle East; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–107. [Google Scholar]
- Sinha, R.; Sinha, B.; Kumari, R.; Vineeth, M.R.; Verma, A.; Gupta, I.D. Effect of season, stage of lactation, parity and level of milk production on incidence of clinical mastitis in Karan Fries and Sahiwal cows. Biol. Rhythm Res. 2021, 52, 593–602. [Google Scholar] [CrossRef]
- Mujyambere, V.; Adomako, K.; Olympio, S.O.; Ntawubizi, M.; Nyinawamwiza, L.; Mahoro, J.; Conroy, A. Local chickens in East African region: Their production and potential. Poult. Sci. 2022, 101, 101547. [Google Scholar] [CrossRef] [PubMed]
- Imam, T.; Gibson, J.S.; Foysal, M.; Das, S.B.; Gupta, S.D.; Fournié, G.; Hoque, M.A.; Henning, J. A Cross-Sectional Study of Antimicrobial Usage on Commercial Broiler and Layer Chicken Farms in Bangladesh. Front. Vet. Sci. 2020, 7, 6113. [Google Scholar] [CrossRef]
- Khan, X.; Rymer, C.; Ray, P.; Lim, R. Categorisation of antimicrobial use in Fijian livestock production systems. Antibiotics 2022, 11, 294. [Google Scholar] [CrossRef]
- Khan, X.; Rymer, C.; Ray, P.; Lim, R. Quantification of antimicrobial use in Fijian livestock farms. One Health 2021, 13, 100326. [Google Scholar] [CrossRef]
- Khan, X.; Lim, R.; Rymer, C.; Ray, P. Fijian farmers’ attitude and knowledge towards antimicrobial use and antimicrobial resistance in livestock production systems -a qualitative study. Front. Vet. Sci. 2022, 9, 8457. [Google Scholar] [CrossRef]
- Lekagul, A.; Tangcharoensathien, V.; Mills, A.; Rushton, J.; Yeung, S. How antibiotics are used in pig farming: A mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ Global Health 2020, 5, e001918. [Google Scholar] [CrossRef] [Green Version]
- Willson, N.L.; Van, T.T.H.; Bhattarai, S.P.; Courtice, J.M.; McIntyre, J.R.; Prasai, T.P.; Moore, R.J.; Walsh, K.; Stanley, D. Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of Spotty Liver Disease. PLoS ONE 2019, 14, e0214471. [Google Scholar] [CrossRef]
- Scott, A.B.; Singh, M.; Groves, P.; Hernandez-Jover, M.; Barnes, B.; Glass, K.; Moloney, B.; Black, A.; Toribio, J.A. Biosecurity practices on Australian commercial layer and meat chicken farms: Performance and perceptions of farmers. PLoS ONE 2018, 13, 1–17. [Google Scholar] [CrossRef]
- Malusi, N.; Falowo, A.B.; Idamokoro, E.M. Herd dynamics, production and marketing constraints in the commercialization of cattle across Nguni Cattle Project beneficiaries in Eastern Cape, South Africa. Pastoralism 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Can, M.F.; Altug, N. Socioeconomic implications of biosecurity practices in small-scale dairy farms. Vet. Q. 2014, 34, 67–73. [Google Scholar] [CrossRef] [Green Version]
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Irish Vet. J. 2020, 73, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Desta, H.; Wieland, B. Antimicrobial Use in Extensive Smallholder Livestock Farming Systems in Ethiopia: Knowledge, Attitudes, and Practices of Livestock Keepers. Front. Vet. Sci. 2020, 7, 55. [Google Scholar] [CrossRef]
- Mangesho, P.E.; Caudell, M.A.; Mwakapeje, E.R.; Ole-Neselle, M.; Kabali, E.; Obonyo, M.; Dorado-Garcia, A.; Valcarce, A.; Kimani, T.; Price, C.; et al. “We are doctors”: Drivers of animal health practices among Maasai pastoralists and implications for antimicrobial use and antimicrobial resistance. Prev. Vet. Med. 2021, 188, 105266. [Google Scholar] [CrossRef]
- Malik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Mikecz, O.; Pica-Ciamarra, U.; Felis, A.; Nizeyimana, G.; Okello, P.; Brunelli, C. Data on antimicrobial use in livestock: Lessons from Uganda. One Health 2020, 10, 100165. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- FAO. Handbook on the Agricultural Integrated Survey (AGRIS). Available online: http://www.fao.org/in-action/agrisurvey/resources/methodological-toolkit/en/ (accessed on 10 January 2022).
- FAO. Guidelines for the Preparation of Livestock Sector Reviews. Available online: https://www.fao.org/3/i2294e/i2294e00.htm (accessed on 5 January 2022).
- Adekanye, U.O.; Ekiri, A.B.; Galipó, E.; Muhammad, A.B.; Mateus, A.; La Ragione, R.M.; Wakawa, A.; Armson, B.; Mijten, E.; Alafiatayo, R.; et al. Knowledge, Attitudes and Practices of Veterinarians Towards Antimicrobial Resistance and Stewardship in Nigeria. Antibiotics 2020, 9, 453. [Google Scholar] [CrossRef]
- Hosmer Jr, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2013; Volume 3, pp. 153–168. [Google Scholar]
- Xu, J.; Sangthong, R.; McNeil, E.; Tang, R.; Chongsuvivatwong, V. Antibiotic use in chicken farms in northwestern China. Antimicrob. Resist. Infect. Control 2020, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Berge, A.C.B.; Atwill, E.R.; Sischo, W.M. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Manyahi, J.; Kibwana, U.; Mgimba, E.; Majigo, M. Multi-drug resistant bacteria predict mortality in bloodstream infection in a tertiary setting in Tanzania. PLoS ONE 2020, 15, e0220424. [Google Scholar] [CrossRef] [Green Version]
Factor | Total | Antimicrobial Use | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | Anthelmintics | Both | No AMU | ||||||||
n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | ||
Division | |||||||||||
Central | 93 | (39) | 27 | (47) | 12 | (33) | 25 | (52) | 29 | (31) | 0.038 |
Western | 143 | (61) | 30 | (53) | 24 | (67) | 23 | (48) | 66 | (69) | |
Province | |||||||||||
Naitasiri | 26 | (11) | 8 | (14) | 6 | (17) | 7 | (15) | 5 | (5) | 0.001 |
Namosi | 13 | (6) | 2 | (4) | 1 | (3) | 2 | (4) | 8 | (8) | |
Rewa | 13 | (6) | 5 | (9) | 1 | (3) | 0 | (0) | 7 | (7) | |
Serua | 19 | (8) | 5 | (9) | 4 | (11) | 6 | (13) | 4 | (4) | |
Tailevu | 22 | (9) | 7 | (12) | 0 | (0) | 10 | (21) | 5 | (5) | |
Ba | 84 | (36) | 15 | (26) | 14 | (39) | 21 | (44) | 34 | (36) | |
Nadroga-Navosa | 28 | (12) | 5 | (9) | 8 | (22) | 2 | (4) | 13 | (14) | |
Ra | 31 | (13) | 10 | (18) | 2 | (6) | 0 | (0) | 19 | (20) | |
Gender | |||||||||||
Male | 198 | (84) | 48 | (84) | 34 | (94) | 44 | (92) | 72 | (76) | 0.021 |
Female | 38 | (16) | 9 | (16) | 2 | (6) | 4 | (8) | 23 | (24) | |
Association memberships | |||||||||||
Yes | 60 | (25) | 10 | (18) | 14 | (39) | 22 | (46) | 14 | (15) | <0.001 |
No | 176 | (75) | 47 | (82) | 22 | (61) | 26 | (54) | 81 | (85) | |
Farm size | |||||||||||
Small holder (<2 ha) | 51 | (22) | 14 | (25) | 2 | (6) | 3 | (6) | 32 | (34) | <0.001 |
Medium-large holder (>2 ha) | 185 | (78) | 43 | (75) | 34 | (94) | 45 | (94) | 63 | (66) | |
Years in operation | |||||||||||
<5 years | 67 | (28) | 19 | (33) | 4 | (11) | 5 | (10) | 39 | (41) | <0.001 |
5–10 years | 68 | (29) | 17 | (30) | 8 | (22) | 15 | (31) | 28 | (29) | |
>10 years | 101 | (43) | 21 | (37) | 24 | (67) | 28 | (58) | 28 | (29) | |
Fencing | |||||||||||
Yes | 133 | (56) | 28 | (49) | 24 | (67) | 36 | (75) | 45 | (47) | 0.005 |
No | 103 | (44) | 29 | (51) | 12 | (33) | 12 | (25) | 50 | (53) | |
Enterprise type | |||||||||||
Beef only | 57 | (24) | 10 | (18) | 17 | (47) | 8 | (17) | 22 | (23) | <0.001 |
Dairy only | 52 | (22) | 9 | (16) | 11 | (31) | 29 | (60) | 3 | (3) | |
Beef and dairy | 11 | (5) | 0 | (0) | 2 | (6) | 4 | (8) | 5 | (5) | |
Layer only | 50 | (21) | 13 | (23) | 3 | (8) | 2 | (4) | 32 | (34) | |
Broiler only | 38 | (16) | 18 | (32) | 0 | (0) | 1 | (2) | 19 | (20) | |
Layer and broiler | 12 | (5) | 4 | (7) | 0 | (0) | 1 | (2) | 7 | (7) | |
Mixed cattle and poultry | 16 | (7) | 3 | (5) | 3 | (8) | 3 | (6) | 7 | (7) | |
Animal housing | |||||||||||
Yes | 150 | (64) | 43 | (75) | 13 | (36) | 22 | (46) | 72 | (76) | <0.001 |
No | 86 | (36) | 14 | (25) | 23 | (64) | 26 | (54) | 23 | (24) | |
Para-veterinarians farm visits | |||||||||||
No visits | 118 | (50) | 21 | (37) | 14 | (39) | 20 | (42) | 63 | (66) | 0.004 |
quarterly | 74 | (31) | 20 | (35) | 15 | (42) | 19 | (40) | 20 | (21) | |
monthly | 44 | (19) | 16 | (28) | 7 | (19) | 9 | (19) | 12 | (13) | |
Veterinarian farm visits | |||||||||||
No visits | 223 | (94) | 46 | (81) | 35 | (97) | 48 | (100) | 94 | (99) | <0.001 |
quarterly | 4 | (2) | 2 | (4) | 1 | (3) | 0 | (0) | 1 | (1) | |
monthly | 9 | (4) | 9 | (16) | 0 | (0) | 0 | (0) | 0 | (0) | |
AMU records | |||||||||||
Yes | 38 | (16) | 16 | (28) | 8 | (22) | 4 | (8) | 10 | (11) | 0.010 |
No | 198 | (84) | 41 | (72) | 28 | (78) | 44 | (92) | 85 | (89) | |
Medicated feed used | |||||||||||
Not used | 125 | (53) | 22 | (39) | 32 | (89) | 35 | (73) | 36 | (38) | <0.001 |
Used | 111 | (47) | 35 | (61) | 4 | (11) | 13 | (27) | 59 | (62) | |
Feed supplements | |||||||||||
Not used | 202 | (86) | 53 | (93) | 30 | (83) | 27 | (56) | 92 | (97) | <0.001 |
Used | 34 | (14) | 4 | (7) | 6 | (17) | 21 | (44) | 3 | (3) | |
Antiseptics and disinfectants | |||||||||||
Not used | 193 | (82) | 44 | (77) | 30 | (83) | 31 | (65) | 88 | (93) | <0.001 |
Used | 43 | (18) | 13 | (23) | 6 | (17) | 17 | (35) | 7 | (7) |
Factor | Antimicrobial Use | |||||
---|---|---|---|---|---|---|
Antibiotics | Anthelmintics | Both | ||||
p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | |
Enterprise type | ||||||
Beef only | 0.934 | 0.92 (0.131, 6.456) | 0.428 | 0.43 (0.053, 3.472) | 0.848 | 1.27 (0.114, 13.985) |
Dairy only | 0.097 | 6.67 (0.711, 62.490) | 0.594 | 1.91 (0.176, 20.776) | 0.018 | 22.97 (1.713, 308.075) |
Beef and dairy | 0 | 0 (0) | 0.264 | 0.23 (0.017, 3.064) | 0.467 | 2.72 (0.184, 40.117) |
Layer only | 0.917 | 1.09 (0.227, 5.206) | 0.151 | 0.23 (0.030, 1.719) | 0.217 | 0.27 (0.032, 2.177) |
Broiler only | 0.356 | 2.10 (0.434, 10.154) | 0 | 0 (0) | 0.057 | 0.08 (0.005, 1.080) |
Layer and broiler | 0.698 | 1.46 (0.217, 9.821) | 0 | 0 (0) | 0.541 | 0.43 (0.029, 6.356) |
Mixed cattle and poultry | Ref | Ref | Ref | |||
Farm size | ||||||
Small holder (<2 ha) | 0.284 | 0.64 (0.282, 1.449) | 0.104 | 0.26 (0.050, 1.319) | 0.015 | 0.15 (0.032, 0.689) |
Medium-large holder (>2 ha) | Ref | Ref | Ref | |||
AMU records | ||||||
Yes | 0.045 | 2.65 (1.024, 6.877) | 0.051 | 3.48 (0.993, 12.166) | 0.406 | 0.53 (0.120, 2.354) |
No | Ref | Ref | Ref | |||
Medicated feed used | ||||||
Not used | 0.894 | 1.05 (0.496, 2.234) | <0.001 | 11.56 (3.456, 38.604) | 0.017 | 3.10 (1.222, 7.882) |
Used | Ref | Ref | Ref | |||
Feed supplements | ||||||
Not used | 0.247 | 2.52 (0.527, 12.003) | 0.025 | 6.37 (1.261, 32.155) | <0.001 | 30.41 (7.277, 127.081) |
Used | Ref | Ref | Ref | |||
Antiseptics and disinfectants | ||||||
Not used | 0.076 | 0.39 (0.136, 1.105) | 0.283 | 0.49 (0.136, 1.789) | 0.001 | 0.15 (0.047, 0.456) |
Used | Ref | Ref | Ref |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, X.; Rymer, C.; Lim, R.; Ray, P. Factors Associated with Antimicrobial Use in Fijian Livestock Farms. Antibiotics 2022, 11, 587. https://doi.org/10.3390/antibiotics11050587
Khan X, Rymer C, Lim R, Ray P. Factors Associated with Antimicrobial Use in Fijian Livestock Farms. Antibiotics. 2022; 11(5):587. https://doi.org/10.3390/antibiotics11050587
Chicago/Turabian StyleKhan, Xavier, Caroline Rymer, Rosemary Lim, and Partha Ray. 2022. "Factors Associated with Antimicrobial Use in Fijian Livestock Farms" Antibiotics 11, no. 5: 587. https://doi.org/10.3390/antibiotics11050587
APA StyleKhan, X., Rymer, C., Lim, R., & Ray, P. (2022). Factors Associated with Antimicrobial Use in Fijian Livestock Farms. Antibiotics, 11(5), 587. https://doi.org/10.3390/antibiotics11050587