Haptens Optimization Using Molecular Modeling and Paper-Based Immunosensor for On-Site Detection of Carbendazim in Vegetable Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Computer-Aided Chemical Analysis
2.3. Preparation of Haptens and Artificial Antigens
2.4. Preparation of CBZ Monoclonal Antibodies
2.5. Preparation of AuNPs Immunoprobes
2.6. Preparation of Test Strip
2.7. Sample Preparation
2.8. Test Procedure
2.9. Evaluation of Analytical Performance
2.9.1. Sensitivity
2.9.2. Specificity
2.9.3. Accuracy
2.9.4. Stability
3. Results and Discussion
3.1. Computer-Aided Chemical Analysis
3.1.1. Lowest-Energy Conformational Analysis
3.1.2. Chemical Structure Parameter Analysis
3.1.3. Electrostatic Interaction Analysis
3.1.4. Molecular Surface Electrostatic Potential Analysis
3.2. Characterization of Haptens and Artificial Antigens
3.3. Characterization of Antisera and mAb
3.4. Characterization of AuNPs and AuNPs Immunoprobe
3.5. Optimization of AuNPs-LFIA
3.5.1. pH for Labeling
3.5.2. Antibody Amount for Labeling
3.5.3. Dilution Buffer of Antibody
3.5.4. Concentration of Coating Antigen
3.6. Sensitivity
3.7. Specificity
3.8. Accuracy and Precision
3.9. Blind Sample Analysis
3.10. Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBZ | Carbendazim |
AuNPs-LFIA | Gold Nanoparticle-based Lateral Flow Immunoassay |
MRLs | Maximum Residue Limits |
HPLC | High-performance Liquid Chromatography |
LC-MS/MS | Liquid Chromatography-tandem Mass Spectrometry |
LFIA | Lateral Flow Immunochromatography |
DMF | N, N-dimethylformamide |
CDI | N, N′-Carbonyldiimidazole |
BSA | Bovine serum albumin |
EDC | N-(3(dimethylamino) propyl)-N′-ethylcarbodiimide |
NHS | N-hydroxysuccinimide |
LF | Lactoferrin |
PVP | Poly (N-vinylpyrrolidone) |
NC | Nitrocellulose |
UV-Vis | Ultraviolet-visible |
ic-ELISA | Indirect Competitive Enzyme-Linked Immunosorbent Assay |
mAb | Monoclonal antibody |
SDS-PAGE | Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis |
PB | Phosphate buffer |
BB | Borate buffer |
PVC | Polyvinyl chloride |
T-line | Test line |
C-line | Control line |
LOD | Limits of detection |
SD | Standard deviation |
IC50 | The half-inhibitory concentration |
CR | Cross-reactivity rate |
CV | Coefficient of variation |
PSA | Polar surface area |
MPI | Molecular Polarity Index |
NMR | Nuclear Magnetic Resonance |
TEM | Transmission Electron Microscope |
References
- Suresh, I.; Selvaraj, S.; Nesakumar, N.; Rayappan, J.B.B.; Kulandaiswamy, A.J. Nanomaterials Based Non-Enzymatic Electrochemical and Optical Sensors for the Detection of Carbendazim: A Review. Trends Environ. Anal. Chem. 2021, 31, e00137. [Google Scholar] [CrossRef]
- Munir, S.; Azeem, A.; Sikandar Zaman, M.; Zia Ul Haq, M. From Field to Table: Ensuring Food Safety by Reducing Pesticide Residues in Food. Sci. Total Environ. 2024, 922, 171382. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Li, B.; Tang, L. Carbendazim Residues in Vegetables in China between 2014 and 2016 and a Chronic Carbendazim Exposure Risk Assessment. Food Control. 2018, 91, 20–25. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Liao, G.; Li, X.; Gu, J.; Qiu, J.; Qian, Y. Carbendazim Led to Neurological Abnormalities by Interfering Metabolic Profiles in Zebrafish Brain after Short-Term Exposure. Environ. Chem. Ecotoxicol. 2025, 7, 164–173. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Env. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Carbendazim Residue in Plant-Based Foods in China: Consecutive Surveys from 2011 to 2020. Environ. Sci. Ecotechnol. 2024, 17, 100301. [CrossRef]
- GB 2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Standard Press: Beijing, China, 2021.
- Wu, Q.; Li, Y.; Wang, C.; Liu, Z.; Zang, X.; Zhou, X.; Wang, Z. Dispersive Liquid–Liquid Microextraction Combined with High Performance Liquid Chromatography–Fluorescence Detection for the Determination of Carbendazim and Thiabendazole in Environmental Samples. Anal. Chim. Acta 2009, 638, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, M.S.; Harischandra Naik, R.; Ratnamma; Nidoni, U.; Bheemanna, M.; Pramesh, D. Simultaneous Determination, Dissipation and Decontamination of Fungicides Applied on Cabbage Using LC-MS/MS. Food Chem. 2021, 355, 129523. [Google Scholar] [CrossRef]
- Khosropour, H.; Keramat, M.; Laiwattanapaisal, W. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim. Biosens. Bioelectron. 2023, 243, 115754. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Fan, Y.; Sun, Y.; Li, Z.; Chen, S.; Shi, J.; Zhang, D.; Zou, X.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2023, 431, 137120. [Google Scholar] [CrossRef]
- Deng, H.; Cai, X.; Ji, Y.; Yan, D.; Yang, F.; Liu, S.; Deji, Z.; Wang, Y.; Bian, Z.; Tang, G.; et al. Development of a Lateral Flow Immunoassay for Rapid Quantitation of Carbendazim in Agricultural Products. Microchem. J. 2022, 179, 107495. [Google Scholar] [CrossRef]
- O’Farrell, B. Evolution in Lateral Flow-Based Immunoassay Systems. In Lateral Flow Immunoassay; Wong, R., Tse, H., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 1–33. [Google Scholar]
- İnce, B.; Uludağ, İ.; Demirbakan, B.; Özyurt, C.; Özcan, B.; Sezgintürk, M.K. Lateral flow assays for food analyses: Food contaminants, allergens, toxins, and beyond. TrAC Trends Anal. Chem. 2023, 169, 117418. [Google Scholar] [CrossRef]
- Qin, J.; Lu, Q.; Wang, C.; Luo, J.; Yang, M. Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal. Bioanal. Chem. 2021, 413, 3725–3735. [Google Scholar] [CrossRef]
- Frontiers|Antibody Engineering for Pursuing a Healthier Future. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.00495/full?source=post_page (accessed on 8 July 2025).
- Zhang, X.; Bai, Y.; Tang, Q.; Liu, M.; Nan, L.; Wen, K.; Yu, X.; Yu, W.; Shen, J.; Wang, Z. Development of epitopephore-based rational hapten design strategy: A combination of theoretical evidence and experimental validation. J. Hazard. Mater. 2022, 445, 130615. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, Y.; Wang, J.; Lei, Y.; Koidis, A.; Li, X.; Shen, X.; Xu, Z.; Lei, H. Broad-Specific Immunochromatography for Simultaneous Detection of Various Sulfonylureas in Adulterated Multi-Herbal Tea. Food Chem. 2022, 370, 131055. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, J.; Zhou, J.; Tan, G.; Zhao, Q.; Zhang, Y.; Wang, B.; Jiao, B. Development of a Sensitive Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for Analysing Nobiletin in Citrus and Herb Samples. Food Chem. 2019, 293, 144–150. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Guo, L.; Liu, L.; Xu, X.; Xu, C.; Kuang, H.; Sun, M. Computational Chemistry-Based Hapten Design and Antibody Production for the Immunochromatographic Assay of Maleic Hydrazide in Food and Environmental Samples. Food Chem. 2025, 487, 144723. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Shi, Q.; Guan, L.; Wang, Y.; Liu, P.; Zhang, C.; Feng, J. Preparation of Monoclonal Antibody and Establishment of Indirect Competitive Chemiluminescence Enzyme Immunoassay for Sodium Pentachlorophenolate. Microchem. J. 2024, 196, 109674. [Google Scholar] [CrossRef]
- Iqbal, M.; Usanase, G.; Oulmi, K.; Aberkane, F.; Bendaikha, T.; Fessi, H.; Zine, N.; Agusti, G.; Errachid, E.-S.; Elaissari, A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull. 2016, 79, 97–104. [Google Scholar] [CrossRef]
- Omidfar, K.; Khorsand, F.; Darziani Azizi, M. New Analytical Applications of Gold Nanoparticles as Label in Antibody Based Sensors. Biosens. Bioelectron. 2013, 43, 336–347. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Q.; Yang, C.; Qiao, R.; Jing, L.; Wang, L.; Xu, C.; Gao, M. Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe3O4 Nanoparticle Aggregates as Color Reagents. Anal. Chem. 2011, 83, 6778–6784. [Google Scholar] [CrossRef] [PubMed]
- Raeisossadati, M.J.; Danesh, N.M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron. 2016, 86, 235–246. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, Y.; Wang, M.; Chen, X.; Wang, B.; Li, Q.X. Ultrasensitive Quantitation of Imidacloprid in Vegetables by Colloidal Gold and Time-Resolved Fluorescent Nanobead Traced Lateral Flow Immunoassays. Food Chem. 2020, 311, 126055. [Google Scholar] [CrossRef]
- Duan, H.; Chen, X.; Wu, Y.; Leng, Y.; Huang, X.; Xiong, Y. Integrated Nanoparticle Size with Membrane Porosity for Improved Analytical Performance in Sandwich Immunochromatographic Assay. Anal. Chim. Acta 2021, 1141, 136–143. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, X.; Li, J.; Dou, L.; Wang, S.; Jia, C.; Li, Y.; Chen, Y.; Yan, S.; Wang, J.; et al. A Dual-Mode Lateral Flow Immunoassay by Ultrahigh Signal-to Background Ratio SERS Probes for Nitrofurazone Metabolites Ultrasensitive Detection. Food Chem. 2024, 441, 138374. [Google Scholar] [CrossRef]
- Yang, H.; Wen, H.; Si, Y.; Ding, M.; Liu, Y.; Yu, Z.; Zhang, L.; Wang, J.; Pan, X.; Han, S.; et al. Computer-Aided Precise Hapten Design Strategy for the Monospecific Detection of Altrenogest: Experimental Validation and Analysis of the Molecular Recognition Mechanism. Food Chem. 2025, 485, 144482. [Google Scholar] [CrossRef]
- Li, P.; Bai, Y.; Jiang, H.; Zhang, Y.; Li, Y.; Duan, C.; Wen, K.; Yu, X.; Wang, Z. Broad-Specificity Antibody Profiled by Hapten Prediction and Its Application in Immunoassay for Fipronil and Major Metabolites. J. Hazard. Mater. 2023, 441, 129931. [Google Scholar] [CrossRef]
- Hansch, C.; Fujita, T. P-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Wallace, M.B.; Iverson, B.L. The Influence of Hapten Size and Hydrophobicity on the Catalytic Activity of Elicited Polyclonal Antibodies. J. Am. Chem. Soc. 1996, 118, 251–252. [Google Scholar] [CrossRef]
- Cai, X.; Whitfield, T.; Moreno, A.Y.; Grant, Y.; Hixon, M.S.; Koob, G.F.; Janda, K.D. Probing the Effects of Hapten Stability on Cocaine Vaccine Immunogenicity. Mol. Pharm. 2013, 10, 4176–4184. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, J.; Mari, G.M.; Zhu, J.; Ma, L.; Jia, L.; Ding, Y.; Yu, X.; Pan, Y.; Wen, K.; et al. Highly Sensitive ELISA for Determination of Nifursol Metabolite in Food Samples without Derivatization: From Rational Hapten Design to Molecular Recognition Mechanism. Food Chem. 2025, 486, 144695. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, H.; Wang, Y. Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids. LWT 2023, 174, 114433. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Zhao, X.; Wu, W.; Fei, J.; Yu, X.; Wen, K.; Shen, J.; Pan, Y.; Wang, Z. Rational Hapten Design, Antibody Preparation, and Immunoassay Development for Rapid Screening Xylazine in Biological Samples. Food Chem. 2025, 465, 142054. [Google Scholar] [CrossRef]
- March, D.; Bianco, V.; Franzese, G. Protein Unfolding and Aggregation near a Hydrophobic Interface. Polymers 2021, 13, 156. [Google Scholar] [CrossRef]
- Sinha, N.; Mohan, S.; Lipschultz, C.A.; Smith-Gill, S.J. Differences in Electrostatic Properties at Antibody–Antigen Binding Sites: Implications for Specificity and Cross-Reactivity. Biophys. J. 2002, 83, 2946–2968. [Google Scholar] [CrossRef]
- Pecht, I.; Lancet, D. Kinetics of Antibody-Hapten Interactions. In Chemical Relaxation in Molecular Biology; Pecht, I., Rigler, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 306–338. [Google Scholar]
- He, F.; Liu, Y.; Dai, S.; Sun, M.; Liu, L.; Xu, L.; Kuang, H.; Xu, C.; Xu, X. Lateral Flow Immunochromatographic Assay Based on Computational Chemistry-Assisted Hapten Screening for the Detection of Ethoxyquin in Food Samples. Food Chem. 2025, 482, 144142. [Google Scholar] [CrossRef]
- Chen, C.; Huang, B.; Xu, W.; Hou, R.; Dong, B.; Yu, X.; Wang, Z.; Li, H. Enhancing the Stability and Sensitivity of a Lateral Flow Immunoassay Using Stabilized AuNPs for the Simultaneous Detection of Sulfonamides and Antibacterial Synergists in Chicken Meat. Sens. Actuators B Chem. 2024, 412, 135812. [Google Scholar] [CrossRef]
- He, F.; Yang, J.; Zou, T.; Xu, Z.; Tian, Y.; Sun, W.; Wang, H.; Sun, Y.; Lei, H.; Chen, Z.; et al. A gold nanoparticle-based immunochromatographic assay for simultaneous detection of multiplex sildenafil adulterants in health food by only one antibody. Anal. Chim. Acta 2021, 1141, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ma, J.; Xue, C.; Wang, L.; Wang, X. One-pot synthesis of poly (acrylic acid)-stabilized Fe3O4 nanocrystal clusters for the simultaneously qualitative and quantitative detection of biomarkers in lateral flow immunoassay. J. Pharm. Biomed. Anal. 2018, 159, 119–126. [Google Scholar] [CrossRef]
- Chen, X.; Lin, M.; Sun, L.; Xu, T.; Lai, K.; Huang, M.; Lin, H. Detection and Quantification of Carbendazim in Oolong Tea by Surface-Enhanced Raman Spectroscopy and Gold Nanoparticle Substrates. Food Chem. 2019, 293, 271–277. [Google Scholar] [CrossRef]
- Martins, T.S.; Machado, S.A.S.; Oliveira, O.N.; Bott-Neto, J.L. Optimized Paper-Based Electrochemical Sensors Treated in Acidic Media to Detect Carbendazim on the Skin of Apple and Cabbage. Food Chem. 2023, 410, 135429. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cui, Q.; Li, Q.; Luo, C.; Chen, M.; Feng, B.; Li, H.; Bu, T.; Mao, Y.; Dang, M.; et al. Preparation of Ultra-Sensitive Anti-Carbendazim Antibodies Based on New Haptens and Their Application in Lateral Flow Immunoassay. Sens. Actuators B Chem. 2024, 412, 135751. [Google Scholar] [CrossRef]
- Lan, M.; Guo, Y.; Zhao, Y.; Liu, Y.; Gui, W.; Zhu, G. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal. Chim. Acta 2016, 938, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tang, Y.; Guo, P.; Zhang, W.; Peng, J.; Xiong, Y.; Ma, B.; Lai, W. Integration of a biocompatible metal-phenolic network and fluorescence microspheres as labels for sensitive and stable detection of carbendazim with a lateral flow immunoassay. Food Chem. 2024, 450, 139260. [Google Scholar] [CrossRef]
Analytes | CAS | IC50 (ng/mL) | CR (%) |
---|---|---|---|
Carbendazim | 10605-21-7 | 16.02 | 100 |
Benomyl | 17804-35-2 | 189.96 | 8.43 |
Thiabendazole | 148-79-8 | >2000 | <0.1 |
2-Aminobenzimidazole | 149104-88-1 | 120.18 | 13.3 |
2-Ethylbenzimidazole | 1848-84-6 | >1500 | <1 |
Thiophanate-Methyl | 23564-05-8 | >2000 | <0.1 |
Diniconazole | 836567-24-3 | >2000 | <0.1 |
Uniconazole | 83657-22-1 | >2000 | <0.1 |
Paclobutrazol | 76738-62-0 | >2000 | <0.1 |
Method | Sample | LOD (μg/kg) | Testing Time (min) | Features | Reference |
---|---|---|---|---|---|
HPLC | Water | 1.00 | 40 | Using dispersive liquid–liquid microextraction | [8] |
LC-MS/MS | Cabbage | 0.5 | >15 | Complex pre-treatment and high cost | [9] |
TRF-LFIA | Tobacco | 0.56 | - | CR (2-Aminobenzimidazole): 16.9% CR (Thiophanate-methyl): 25.9% | [12] |
SERS-AuNPs | Oolong tea | 100 | >25 | Complex pre-treatment and high cost | [45] |
Electrochemical method | Apple Cabbage | 11.74 | - | On-site detection but low sensitivity | [46] |
AuNPs-LFIA | Leek | 0.18 | <20 | CR (2-Aminobenzimidazole): 19.32% CR (Thiophanate-methyl): 3.05% | [47] |
Immunoassay Chip Detection | - | 0.04 | 90 | CR (Benomyl): 7.46% Long testing time | [48] |
AIEFM@MPN-LFIA | Apple, pep-per, cucumber | 0.019 | - | significant cross-resistance with benomyl | [49] |
AuNPs-LFIA | Green bean Leek | 3.80 1.80 | 10 | Easy operation, low cost, lower cross-reactivity, and fewer cross-reacting species. | This work |
Sample | Method | Spiked Levels (μg/kg) | Measured Level (μg/kg) | Recovery (%) | CV (%) |
---|---|---|---|---|---|
Green beans | AuNPs-LFIA | 15 | 17.66 ± 1.70 | 117.73 | 9.62 |
35 | 32.52 ± 1.36 | 92.91 | 4.18 | ||
135 | 122.61 ± 3.95 | 90.82 | 3.22 | ||
LC-MS/MS | 15 | 15.23 ± 1.24 | 101.53 | 8.14 | |
35 | 36.39 ± 1.12 | 104.82 | 3.07 | ||
135 | 128.41 ± 2.46 | 95.12 | 1.92 | ||
Leek | AuNPs-LFIA | 50 | 54.62 ± 4.39 | 109.24 | 8.04 |
100 | 86.77 ± 3.92 | 86.77 | 4.52 | ||
300 | 313.74 ± 8.60 | 104.58 | 2.74 | ||
LC-MS/MS | 50 | 52.79 ± 1.54 | 105.58 | 2.92 | |
100 | 92.71 ± 2.87 | 92.71 | 3.10 | ||
300 | 308.11 ± 5.38 | 102.70 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yuan, Z.; Pan, K.; Wang, Y.; Yu, X.; Guan, T.; Chen, J.; Lei, H. Haptens Optimization Using Molecular Modeling and Paper-Based Immunosensor for On-Site Detection of Carbendazim in Vegetable Products. Biosensors 2025, 15, 625. https://doi.org/10.3390/bios15090625
Chen W, Yuan Z, Pan K, Wang Y, Yu X, Guan T, Chen J, Lei H. Haptens Optimization Using Molecular Modeling and Paper-Based Immunosensor for On-Site Detection of Carbendazim in Vegetable Products. Biosensors. 2025; 15(9):625. https://doi.org/10.3390/bios15090625
Chicago/Turabian StyleChen, Wenjing, Zhuzeyang Yuan, Kangliang Pan, Yu Wang, Xiaoqin Yu, Tian Guan, Jiahong Chen, and Hongtao Lei. 2025. "Haptens Optimization Using Molecular Modeling and Paper-Based Immunosensor for On-Site Detection of Carbendazim in Vegetable Products" Biosensors 15, no. 9: 625. https://doi.org/10.3390/bios15090625
APA StyleChen, W., Yuan, Z., Pan, K., Wang, Y., Yu, X., Guan, T., Chen, J., & Lei, H. (2025). Haptens Optimization Using Molecular Modeling and Paper-Based Immunosensor for On-Site Detection of Carbendazim in Vegetable Products. Biosensors, 15(9), 625. https://doi.org/10.3390/bios15090625