Potential-Resolved Electrochemiluminescence and Its Application in Disease Biomarker Detection
Abstract
1. Introduction
2. ECL Luminophores and Potential-Resolved ECL Luminophores
2.1. Traditional ECL Luminophores
2.1.1. Inorganic ECL Luminophores
2.1.2. Organic ECL Luminophores
2.1.3. Nanomaterial-Based ECL Luminophores

2.2. Potential-Resolved ECL
2.2.1. Potential-Resolved ECL of Metal–Organic Complexes
2.2.2. Potential-Resolved ECL Based on Layer-by-Layer-Modified Electrodes
2.2.3. Potential-Resolved ECL Based on Nanomaterials
3. Potential-Resolved ECL Applications
3.1. Applications in Self-Calibration Detection
3.2. Applications in Simultaneous Multi-Target Detection
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ECL | Electrochemiluminescence |
| ABEI | N-(4-aminobutyl)-N-ethylisoluminol |
| MOF | metal–organic framework |
| VB | valence band |
| MMP | matrix metalloproteinases |
| Cu-MOF | copper-based metal–organic framework |
| ITO | indium tin oxide |
| RET | resonance energy transfer |
| BODIPY | boron-dipyrromethene |
| TCPP | 5,10,15,20-tetra(4-carboxyphenyl) porphyrin |
| PTCDA | 3,4,9,10-perylene tetracarboxylic dianhydride |
| RSD | relative standard deviation |
| GIP | glycosylation-imprinted polymers |
| NCs | nanocrystals |
| CEA | carcinoembryonic antigen |
| AFP | alpha-fetoprotein |
References
- Vacher, M.; Galván, I.F.; Ding, B.-W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y.-J.; Navizet, I.; Roca-Sanjuán, D.; et al. Chemi- and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018, 118, 6927–6974. [Google Scholar] [CrossRef]
- Tzani, M.A.; Gioftsidou, D.K.; Kallitsakis, M.G.; Pliatsios, N.V.; Kalogiouri, N.P.; Angaridis, P.A.; Lykakis, I.N.; Terzidis, M.A. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021, 26, 7664. [Google Scholar] [CrossRef]
- Roda, B.; Deo, S.K.; O’Connor, G.; Moraskie, M.; Giordani, S.; Marassi, V.; Roda, A.; Daunert, S. Shining light on biosensors: Chemiluminescence and bioluminescence in enabling technologies. TrAC Trends Anal. Chem. 2024, 180, 117975. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ecl). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Zhou, L.; Fei, J.; Zhang, S.; Shan, T. Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors. Biosensors 2025, 15, 471. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J. Electrogenerated Chemiluminescence; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Dufford, R.; Nightingale, D.; Gaddum, L. Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena. J. Am. Chem. Soc. 1927, 49, 1858–1864. [Google Scholar] [CrossRef]
- Lv, W.; Ye, H.; Yuan, Z.; Liu, X.; Chen, X.; Yang, W. Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC Trends Anal. Chem. 2020, 123, 115767. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Wang, H. Advances in electrochemiluminescence co-reaction accelerator and its analytical applications. Anal. Bioanal. Chem. 2021, 413, 4119–4135. [Google Scholar] [CrossRef]
- Rhyne, P.W.; Wong, O.T.; Zhang, Y.J.; Weiner, R.S. Electrochemiluminescence in bioanalysis. Bioanalysis 2009, 1, 919–935. [Google Scholar] [CrossRef]
- Guo, M.; Du, D.; Wang, J.; Ma, Y.; Yang, D.; Haghighatbin, M.A.; Shu, J.; Nie, W.; Zhang, R.; Bian, Z.; et al. Three-Biomarker Joint Strategy for Early and Accurate Diagnosis of Acute Myocardial Infarction via a Multiplex Electrochemiluminescence Immunoarray Coupled with Robust Machine Learning. Chem. Biomed. Imaging 2023, 1, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.-Y.; Liu, W.; Chen, C.; Zhu, H.-T.; Wang, A.-J.; Yuan, P.-X.; Feng, J.-J. Automated ECL Aptasensing Platform from an Intrarticular Radical Annihilation Route for Distinguishing Glioma Stages. Anal. Chem. 2024, 96, 16063–16071. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, H.; Cai, R.; Tan, W. Novel Nucleic Acid-Assisted Ion-Responsive ECL Biosensor Based on Hollow AuAg Nanoboxes with Excellent SPR and Effective Coreaction Acceleration. Anal. Chem. 2024, 96, 11076–11082. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Su, Y.; Ji, H.; Jiang, M.; Zhang, R.; Ding, L.; Chen, Y.; Song, D. Enhanced detection of 4-nitrophenol in drinking water: ECL sensor utilizing velvet-like graphitic carbon nitride and molecular imprinting. Food Chem. 2024, 460, 140599. [Google Scholar] [CrossRef]
- Liu, X.; Tan, H.; Song, J.; Tao, L.; Wang, X.; Zhu, C.; Yu, Y. Electrochemiluminescence-based biosensors for lead ion detection in environmental matrices: From signal amplification strategies to sensing modes. Chem. Eng. J. 2025, 523, 168332. [Google Scholar] [CrossRef]
- Wang, X.; Wan, R.; Tang, Y.; Sun, S.; Chen, H.; Li, L.; Chen, J.; Wei, J.; Chi, Z.; Li, H. Aggregation-induced emission materials-based Electrochemiluminescence emitters for sensing applications: Progress, challenges and perspectives. Coord. Chem. Rev. 2025, 531, 216520. [Google Scholar] [CrossRef]
- Zhao, Y.; Bouffier, L.; Xu, G.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano)materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, X.; Zhang, Z.; Zhao, Y.; Cao, Y.; Zhou, Y.; Zhu, J.-J. Electrochemiluminescence Microscopy in Nano-Electrochemistry Research: Unraveling the Underlying Principles, Tracing the Evolutionary Developments, and Charting the Prospective Trajectories. Adv. Funct. Mater. 2025, 35, 2425768. [Google Scholar] [CrossRef]
- Cui, L.; Yang, Y.; Song, L.; Cao, X.; Chu, W.; Zhang, C.Y. Enhanced Electrochemiluminescence of Porphyrin-Based Hydrogen-Bonded Organic Frameworks at Low Positive Potential via Substituent-Induced Outer-Sphere Microenvironment Modulation. Small 2025, 21, 2408946. [Google Scholar] [CrossRef]
- Guo, M.; Shu, J.; Du, D.; Wang, Y.; Cui, H. Tetrakis (4-carboxyphenyl) porphyrin and Ru(bpy)32+ modified SiO2 nanospheres for potential and wavelength resolved electrochemiluminescence. J. Mater. Chem. C 2023, 11, 13106–13112. [Google Scholar] [CrossRef]
- Guo, M.; Pan, Y.; Du, D.; Wang, L.; Nie, W. Single-electrode electrochemiluminescence immunoarray combined with smartphone for high-throughput detection of heart-type fatty acid binding protein. Microchem. J. 2025, 212, 113249. [Google Scholar] [CrossRef]
- Li, Z.; Guo, M.; Zhong, W. Multiplex Detection of Biomarkers Empowered by Nanomaterials. Precis. Chem. 2025, 3, 297–318. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Han, Z.; Zheng, T.; Du, D.; Zou, G.; Cui, H. Potential-resolved multicolor electrochemiluminescence of N-(4-Aminobutyl)-N-ethylisoluminol/tetra (4-carboxyphenyl) porphyrin/TiO2 nanoluminophores. Anal. Chem. 2017, 89, 12636–12640. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Shu, J.; Du, D.; Haghighatbin, M.A.; Yang, D.; Bian, Z.; Cui, H. A label-free three potential ratiometric electrochemiluminescence immunosensor for cardiac troponin I based on N-(4-aminobutyl)-N-ethylisoluminol functionalized graphene quantum dots. Sens. Actuators B Chem. 2021, 334, 129628. [Google Scholar] [CrossRef]
- Du, D.; Shu, J.; Guo, M.; Haghighatbin, M.A.; Yang, D.; Bian, Z.; Cui, H. Potential-resolved differential electrochemiluminescence immunosensor for cardiac troponin I based on MOF-5-wrapped CdS quantum dot nanoluminophores. Anal. Chem. 2020, 92, 14113–14121. [Google Scholar] [CrossRef]
- Chen, L.; Wei, J.; Chi, Y.; Zhou, S.F. Tris(2,2′-bipyridyl)ruthenium(II)-Nanomaterial Co-Reactant Electrochemiluminescence. ChemElectroChem 2019, 6, 3878–3884. [Google Scholar] [CrossRef]
- Chen, X.-m.; Su, B.-y.; Song, X.-h.; Chen, Q.-a.; Chen, X.; Wang, X.-r. Recent advances in electrochemiluminescent enzyme biosensors. TrAC Trends Anal. Chem. 2011, 30, 665–676. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: A review. Luminescence 2011, 26, 77–85. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Zhou, M.; Yu, H. Fabrication of Ru(bpy)32+-titanate nanotube nanocomposite and its application as sensitive solid-state electrochemiluminescence sensor material. J. Phys. Chem. Solids 2010, 71, 527–529. [Google Scholar] [CrossRef]
- Gai, Q.-Q.; Wang, D.-M.; Huang, R.-F.; Liang, X.-X.; Wu, H.-L.; Tao, X.-Y. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2,2′-bipyridine)ruthenium(II)/tripropylamine system by gold nanoparticles and its sensing applications. Biosens. Bioelectron. 2018, 118, 80–87. [Google Scholar] [CrossRef]
- Kitte, S.A.; Bushira, F.A.; Li, H.; Jin, Y. Electrochemiluminescence of Ru(bpy)32+/thioacetamide and its application for the sensitive determination of hepatotoxic thioacetamide. Analyst 2021, 146, 5198–5203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Huang, J.; Yang, L.; Li, L.; You, T. Enhanced electrochemiluminescence based on Ru(bpy)32+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal. Chim. Acta 2014, 824, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kalaiyarasan, G.; Raju, C.V.; Veerapandian, M.; Kumar, S.S.; Joseph, J. Impact of aminated carbon quantum dots as a novel co-reactant for Ru(bpy)32+: Resolving specific electrochemiluminescence for butein detection. Anal. Bioanal. Chem. 2020, 412, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wei, M.-Y.; Guo, L.-H. Enhanced electrogenerated chemiluminescence of Ru(bpy)32+/tripropylamine system on indium tin oxide nanoparticle modified transparent electrode. J. Electroanal. Chem. 2011, 656, 136–139. [Google Scholar] [CrossRef]
- Sun, X.; Du, Y.; Zhang, L.; Dong, S.; Wang, E. Luminescent supramolecular microstructures containing Ru(bpy)32+: Solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal. Chem. 2007, 79, 2588–2592. [Google Scholar] [CrossRef]
- Lai, R.Y.; Chiba, M.; Kitamura, N.; Bard, A.J. Electrogenerated Chemiluminescence. 68. Detection of Sodium Ion with a Ruthenium(II) Complex with Crown Ether Moiety at the 3,3′-Positions on the 2,2′-Bipyridine Ligand. Anal. Chem. 2002, 74, 551–553. [Google Scholar] [CrossRef]
- Sun, S.; Yang, Y.; Liu, F.; Pang, Y.; Fan, J.; Sun, L.; Peng, X. Study of highly efficient bimetallic ruthenium tris-bipyridyl ecl labels for coreactant system. Anal. Chem. 2009, 81, 10227–10231. [Google Scholar] [CrossRef]
- Muegge, B.D.; Richter, M.M. Electrochemiluminescent detection of metal cations using a ruthenium (II) bipyridyl complex containing a crown ether moiety. Anal. Chem. 2002, 74, 547–550. [Google Scholar] [CrossRef]
- Schmittel, M.; Lin, H.W. Quadruple-Channel Sensing: A Molecular Sensor with a Single Type of Receptor Site for Selective and Quantitative Multi-Ion Analysis. Angew. Chem. 2007, 119, 911–914. [Google Scholar] [CrossRef]
- Friedman, A.E.; Chambron, J.C.; Sauvage, J.P.; Turro, N.J.; Barton, J.K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 1990, 112, 4960–4962. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, Y.; Li, T.; Du, Y.; Li, J.; Wang, E. Highly Efficient Electrochemiluminescence of Functionalized Tris(2,2′-bipyridyl)ruthenium(II) and Selective Concentration Enrichment of Its Coreactants. Adv. Funct. Mater. 2007, 17, 1003–1009. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Xi, J.; Lin, S.; Chen, Y.; Lin, Y.; Chen, Z. A novel electrochemiluminescence ethanol biosensor based on tris(2,2′-bipyridine)ruthenium(II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film. Biosens. Bioelectron. 2013, 41, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Pan, T.; Pan, Y.; Wang, W.; Chen, X.; Shan, X.; Chen, Z. Highly Sensitive and Selective Detection of Pb(II) by NH2–SiO2/Ru(bpy)32+–UiO66 based Solid-state ECL Sensor. Electroanalysis 2020, 32, 462–469. [Google Scholar] [CrossRef]
- Richter, M.M.; Bard, A.J.; Kim, W.; Schmehl, R.H. Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores. Anal. Chem. 1998, 70, 310–318. [Google Scholar] [CrossRef]
- Zhou, M.; Roovers, J. Dendritic supramolecular assembly with multiple Ru(II) tris(bipyridine) units at the periphery: Synthesis, spectroscopic, and electrochemical study. Macromolecules 2001, 34, 244–252. [Google Scholar] [CrossRef]
- Zhou, M.; Roovers, J.; Robertson, G.P.; Grover, C.P. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal. Chem. 2003, 75, 6708–6717. [Google Scholar] [CrossRef]
- Wang, S.; Milam, J.; Ohlin, A.C.; Rambaran, V.H.; Clark, E.; Ward, W.; Seymour, L.; Casey, W.H.; Holder, A.A.; Miao, W. Electrochemical and electrogenerated chemiluminescent studies of a trinuclear complex, [((phen)2Ru(dpp))2RhCl2]5+, and its interactions with calf thymus DNA. Anal. Chem. 2009, 81, 4068–4075. [Google Scholar] [CrossRef]
- Zanarini, S.; Rampazzo, E.; Bonacchi, S.; Juris, R.; Marcaccio, M.; Montalti, M.; Paolucci, F.; Prodi, L. Iridium doped silica–PEG nanoparticles: Enabling electrochemiluminescence of neutral complexes in aqueous media. J. Am. Chem. Soc. 2009, 131, 14208–14209. [Google Scholar] [CrossRef]
- Kiran, R.V.; Zammit, E.M.; Hogan, C.F.; James, B.D.; Barnett, N.W.; Francis, P.S. Chemiluminescence from reactions with bis-cyclometalated iridium complexes in acidic aqueous solution. Analyst 2009, 134, 1297–1298. [Google Scholar] [CrossRef]
- Albrecht, H.O. Über die chemiluminescenz des aminophthalsäurehydrazids. Z. Phys. Chem. 1928, 136, 321–330. [Google Scholar] [CrossRef]
- García-Campaña, A.M.; Gámiz-Gracia, L.; Baeyens, W.R.; Barrero, F.A. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis. J. Chromatogr. B 2003, 793, 49–74. [Google Scholar] [CrossRef]
- Fähnrich, K.A.; Pravda, M.; Guilbault, G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 2001, 54, 531–559. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, Y.; Wang, T.; Li, J. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 2011, 83, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, Q.; Huang, L.; Wang, Y.; Chen, F.; Liu, F.; Ma, Y. Block Electrochemiluminescence of Luminol through O-Etherification and Its Application in Sensing of β-Glucosidase. Anal. Chem. 2025, 97, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Zhu, L.; Liu, Y.; He, Y.; Li, Y. Ultrastable Luminol–OH−-(Ni-WOx-CNT) ECL System with High Strength and Its Applications in Sensing. Anal. Chem. 2024, 96, 9953–9960. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, L.; Lu, X. Sensitive Detection of Trace Hydrogen Peroxide via Dual-Emissive Electrochemiluminescence from a Luminol/Porphyrin System: Comprehensive Innovative Experiments on Analytical Instruments for Undergraduates. J. Chem. Educ. 2024, 101, 1248–1256. [Google Scholar] [CrossRef]
- Faulkner, L.; Bard, A.J. Techniques of electrogenerated chemiluminescence. Electroanal. Chem. 1977, 10, 1–95. [Google Scholar]
- Cadenas, E. Biological chemiluminescence. In Reactive Oxygen Species in Chemistry, Biology, and Medicine; Springer: Berlin/Heidelberg, Germany, 1988; pp. 117–141. [Google Scholar]
- Bard, A. Electrochemical Merhods. In Fundamentals and Applications; John Wiley and Sons: Hoboken, NJ, USA, 1980; Volume 290. [Google Scholar]
- Omer, K.M.; Ku, S.Y.; Wong, K.T.; Bard, A.J. Efficient and Stable Blue Electrogenerated Chemiluminescence of Fluorene-Substituted Aromatic Hydrocarbons. Angew. Chem. 2009, 121, 9464–9467. [Google Scholar] [CrossRef]
- Xia, W.; Du, Z.; Cui, Q.; Dong, H.; Wang, F.; He, P.; Tang, Y. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2014, 276, 489–498. [Google Scholar] [CrossRef]
- Chiang, C.-F.; Hsu, K.-C.; Tsai, T.-Y.; Cho, C.-Y.; Hsu, C.-H.; Yang, D.-J. Evaluation of optimal QuEChERS conditions of various food matrices for rapid determination of EU priority polycyclic aromatic hydrocarbons in various foods. Food Chem. 2021, 334, 127471. [Google Scholar] [CrossRef]
- Wu, N.; Gao, W.; Yang, Q.; Qiao, X.; Cai, Y.; Gong, J. Transfer of European Union priority polycyclic aromatic hydrocarbons to lycopene extracted from tomato peel powder and assessment of the risks posed. Food Chem. 2021, 357, 129785. [Google Scholar] [CrossRef] [PubMed]
- Dosis, I.; Ricci, M.; Emteborg, H.; Emons, H. A journey towards whole water certified reference materials for organic substances: Measuring polycyclic aromatic hydrocarbons as required by the European Union Water Framework Directive. Anal. Bioanal. Chem. 2021, 413, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Qi, Y.; Wang, J.; Chen, G. Using acridinium ester as the sonochemiluminescent probe for labeling of protein. Analyst 2009, 134, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; Gao, W.; Zholudov, Y.; Muzyka, K.; Xu, G. Electrochemiluminescence of acridines. Electroanalysis 2016, 28, 2672–2679. [Google Scholar] [CrossRef]
- Saqib, M.; Bashir, S.; Kitte, S.A.; Li, H.; Jin, Y. Acridine orange as a coreactant for efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) and its use in selective and sensitive detection of thiourea. Chem. Commun. 2020, 56, 5154–5157. [Google Scholar] [CrossRef]
- Adcock, J.L.; Barrow, C.J.; Barnett, N.W.; Conlan, X.A.; Hogan, C.F.; Francis, P.S. Chemiluminescence and electrochemiluminescence detection of controlled drugs. Drug Test. Anal. 2011, 3, 145–160. [Google Scholar] [CrossRef]
- Chandross, E.A. A new chemiluminescent system. Tetrahedron Lett. 1963, 4, 761–765. [Google Scholar] [CrossRef]
- Bos, R.; Tonkin, S.A.; Hanson, G.R.; Hindson, C.M.; Lim, K.F.; Barnett, N.W. In search of a chemiluminescence 1,4-dioxy biradical. J. Am. Chem. Soc. 2009, 131, 2770–2771. [Google Scholar] [CrossRef]
- Ding, Z.; Quinn, B.M.; Haram, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297. [Google Scholar] [CrossRef]
- Wang, C.; Ke, S.; Yang, J.; Hu, W.; Qiu, F.; Wang, R.; Yang, Y. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition. Nanotechnology 2015, 26, 105201. [Google Scholar] [CrossRef]
- Amelia, M.; Lincheneau, C.; Silvi, S.; Credi, A. Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev. 2012, 41, 5728–5743. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Wang, J.; Zhu, Y.-C.; Xu, J.-J.; Chen, H.-Y. Quantum dots: Electrochemiluminescent and photoelectrochemical bioanalysis. Anal. Chem. 2015, 87, 9520–9531. [Google Scholar] [CrossRef] [PubMed]
- Franceschetti, A.; Zunger, A. Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots. Phys. Rev. B 2000, 62, 2614. [Google Scholar] [CrossRef]
- Murray, R.W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Z.; Li, S.; Qi, L.; Xu, G. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters. Sci. China Chem. 2016, 59, 794–801. [Google Scholar] [CrossRef]
- He, S.; Ding, Z. Progress in electrochemistry and electrochemiluminescence of metal clusters. Curr. Opin. Electrochem. 2018, 7, 109–117. [Google Scholar] [CrossRef]
- Rizwan, M.; Mohd-Naim, N.F.; Ahmed, M.U. Trends and advances in electrochemiluminescence nanobiosensors. Sensors 2018, 18, 166. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, A.-Y.; Huang, D.; Zhuo, Y.; Chai, Y.-Q.; Yuan, R. Cu nanoclusters: Novel electrochemiluminescence emitters for bioanalysis. Anal. Chem. 2016, 88, 11527–11532. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.-J. Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine. Anal. Chem. 2011, 83, 661–665. [Google Scholar] [CrossRef]
- Kesarkar, S.; Rampazzo, E.; Zanut, A.; Palomba, F.; Marcaccio, M.; Valenti, G.; Prodi, L.; Paolucci, F. Dye-doped nanomaterials: Strategic design and role in electrochemiluminescence. Curr. Opin. Electrochem. 2018, 7, 130–137. [Google Scholar] [CrossRef]
- Dai, R.; Wu, F.; Xu, H.; Chi, Y. Anodic, Cathodic, and Annihilation Electrochemiluminescence Emissions from Hydrophilic Conjugated Polymer Dots in Aqueous Medium. ACS Appl. Mater. Interfaces 2015, 7, 15160–15167. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-L.; Palacios, R.E.; Fan, F.-R.F.; Bard, A.J.; Barbara, P.F. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 2008, 130, 8906–8907. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Dai, C.; Lei, J.; Ju, H.; Cheng, Y. Silole-containing polymer nanodot: An aqueous low-potential electrochemiluminescence emitter for biosensing. Anal. Chem. 2016, 88, 845–850. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, F.; Wang, N.; Lei, J.; Ju, H. Ru(bpy)32+ incorporated luminescent polymer dots: Double-enhanced electrochemiluminescence for detection of single-nucleotide polymorphism. Anal. Chem. 2017, 89, 7659–7666. [Google Scholar] [CrossRef]
- Li, H.; Sentic, M.; Ravaine, V.; Sojic, N. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. Phys. Chem. Chem. Phys. 2016, 18, 32697–32702. [Google Scholar] [CrossRef]
- Dang, J.; Guo, Z.; Zheng, X. Label-free sensitive electrogenerated chemiluminescence aptasensing based on chitosan/Ru(bpy)32+/silica nanoparticles modified electrode. Anal. Chem. 2014, 86, 8943–8950. [Google Scholar] [CrossRef]
- Tian, D.; Duan, C.; Wang, W.; Cui, H. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosens. Bioelectron. 2010, 25, 2290–2295. [Google Scholar] [CrossRef]
- Han, Q.; Wang, C.; Liu, P.; Zhang, G.; Song, L.; Fu, Y. Achieving synergistically enhanced dual-mode electrochemiluminescent and electrochemical drug sensors via a multi-effect porphyrin-based metal-organic framework. Sens. Actuators B Chem. 2021, 330, 129388. [Google Scholar]
- Ding, L.; Hong, H.; Xiao, L.; Hu, Q.; Zuo, Y.; Hao, N.; Wei, J.; Wang, K. Nanoparticles-doped induced defective ZIF-8 as the novel cathodic luminophore for fabricating high-performance electrochemiluminescence aptasensor for detection of omethoate. Biosens. Bioelectron. 2021, 192, 113492. [Google Scholar]
- Li, J.; Luo, M.; Jin, C.; Zhang, P.; Yang, H.; Cai, R.; Tan, W. Plasmon-enhanced electrochemiluminescence of PTP-decorated Eu MOF-based Pt-tipped Au bimetallic nanorods for the lincomycin assay. ACS Appl. Mater. Interfaces 2022, 14, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Tang, Z.R.; Dong, Y.P.; Wang, C.M. Electrogenerated chemiluminescence of ZnO nanorods and its sensitive detection of cytochrome C. Talanta 2018, 179, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Chu, C.; Ge, S.; Yu, J.; Yan, M.; Song, X. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Microchim. Acta 2015, 182, 1009–1016. [Google Scholar] [CrossRef]
- Jiang, M.-H.; Lu, P.; Lei, Y.-M.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochim. Acta 2018, 271, 464–471. [Google Scholar] [CrossRef]
- Muegge, B.D.; Richter, M.M. Multicolored electrogenerated chemiluminescence from ortho-metalated iridium (III) systems. Anal. Chem. 2004, 76, 73–77. [Google Scholar] [CrossRef]
- Doeven, E.H.; Zammit, E.M.; Barbante, G.J.; Hogan, C.F.; Barnett, N.W.; Francis, P.S. Selective excitation of concomitant electrochemiluminophores: Tuning emission color by electrode potential. Angew. Chem. 2012, 124, 4430–4433. [Google Scholar] [CrossRef]
- Park, H.J.; Yoo, S.; Shin, I.S.; Chung, Y.K.; Kim, J. Color-Tunable Electrogenerated Chemiluminescence of Ruthenium N-Heterocyclic Carbene Complexes. Electroanalysis 2013, 25, 1111–1115. [Google Scholar] [CrossRef]
- Guo, W.; Ding, H.; Gu, C.; Liu, Y.; Jiang, X.; Su, B.; Shao, Y. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 2018, 140, 15904–15915. [Google Scholar] [CrossRef]
- Sun, W.; Sun, S.; Jiang, N.; Wang, H.; Peng, X. Tuning the electrochemiluminescence color by potential: Design of a series of heterodinuclear Ir/Ru labels. Organometallics 2015, 34, 3385–3389. [Google Scholar] [CrossRef]
- Welter, S.; Lafolet, F.; Cecchetto, E.; Vergeer, F.; De Cola, L. Energy Transfer by a Hopping Mechanism in Dinuclear IrIII/RuII Complexes: A Molecular Wire? ChemPhysChem 2005, 6, 2417–2427. [Google Scholar] [CrossRef]
- Gao, H.; Dang, Q.; Xia, S.; Zhao, Y.; Qi, H.; Gao, Q.; Zhang, C. Highly selective electrogenerated chemiluminescence biosensor for simultaneous detection of matrix metalloproteinase-2 and matrix metalloproteinase-7 in cell secretions. Sens. Actuators B Chem. 2017, 253, 69–76. [Google Scholar] [CrossRef]
- Cai, Q.; Li, H.; Wang, B.; Jie, G. A spatial-potential-resolved electrochemiluminescence biosensor for simultaneous detection of BRCA1 and BRCA2 based on a novel self-luminescent metal–organic framework. Chem. Eng. J. 2023, 476, 146799. [Google Scholar] [CrossRef]
- Hesari, M.; Swanick, K.N.; Lu, J.-S.; Whyte, R.; Wang, S.; Ding, Z. Highly Efficient Dual-Color Electrochemiluminescence from BODIPY-Capped PbS Nanocrystals. J. Am. Chem. Soc. 2015, 137, 11266–11269. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Haghighatbin, M.A.; Shen, W.; Mi, L.; Cui, H. Metal ion-mediated potential-resolved ratiometric electrochemiluminescence bioassay for efficient determination of miR-133a in early diagnosis of acute myocardial infarction. Anal. Chem. 2020, 92, 7062–7070. [Google Scholar] [CrossRef]
- Zhang, W.; Song, Y.; Wang, Y.; He, S.; Shang, L.; Ma, R.; Jia, L.; Wang, H. A perylenetetracarboxylic dianhydride and aniline-assembled supramolecular nanomaterial with multi-color electrochemiluminescence for a highly sensitive label-free immunoassay. J. Mater. Chem. B 2020, 8, 3676–3682. [Google Scholar] [CrossRef]
- Zhang, H.-R.; Xu, J.-J.; Chen, H.-Y. Electrochemiluminescence ratiometry: A new approach to DNA biosensing. Anal. Chem. 2013, 85, 5321–5325. [Google Scholar] [CrossRef]
- Feng, Q.-M.; Shen, Y.-Z.; Li, M.-X.; Zhang, Z.-L.; Zhao, W.; Xu, J.-J.; Chen, H.-Y. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal. Chem. 2016, 88, 937–944. [Google Scholar] [CrossRef]
- Du, D.; Wang, J.; Guo, M.; Shu, J.; Nie, W.; Bian, Z.; Yang, D.; Cui, H. Charge-Dependent Signal Changes for Label-Free Electrochemiluminescence Immunoassays. Anal. Chem. 2022, 94, 16436–16442. [Google Scholar] [CrossRef]
- Luo, K.; Jiang, Z.; Li, L.; Lin, L.; Qin, T.; Li, J. A Glycosyl-Imprinted Sensor Used for Accurate Classification and Quantification of Breast Cancer-Derived Exosomes by Electrochemiluminescence Detection of Two Glycoproteins at Dual Potentials. ACS Sens. 2025, 10, 5528–5538. [Google Scholar] [CrossRef]
- Zou, G.; Tan, X.; Long, X.; He, Y.; Miao, W. Spectrum-resolved dual-color electrochemiluminescence immunoassay for simultaneous detection of two targets with nanocrystals as tags. Anal. Chem. 2017, 89, 13024–13029. [Google Scholar] [CrossRef]
- Zhou, B.; Zhu, M.; Hao, Y.; Yang, P. Potential-Resolved Electrochemiluminescence for Simultaneous Determination of Triple Latent Tuberculosis Infection Markers. ACS Appl. Mater. Interfaces 2017, 9, 30536–30542. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Su, X.; Han, R.; Du, D.; Guo, M. Potential-Resolved Electrochemiluminescence and Its Application in Disease Biomarker Detection. Biosensors 2025, 15, 749. https://doi.org/10.3390/bios15110749
Wang L, Su X, Han R, Du D, Guo M. Potential-Resolved Electrochemiluminescence and Its Application in Disease Biomarker Detection. Biosensors. 2025; 15(11):749. https://doi.org/10.3390/bios15110749
Chicago/Turabian StyleWang, Liangbiao, Xiaojing Su, Rongrong Han, Dexin Du, and Mingquan Guo. 2025. "Potential-Resolved Electrochemiluminescence and Its Application in Disease Biomarker Detection" Biosensors 15, no. 11: 749. https://doi.org/10.3390/bios15110749
APA StyleWang, L., Su, X., Han, R., Du, D., & Guo, M. (2025). Potential-Resolved Electrochemiluminescence and Its Application in Disease Biomarker Detection. Biosensors, 15(11), 749. https://doi.org/10.3390/bios15110749

