Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Synthesis of NCDs and Ir–NCDs Nanowires
2.4. Fabrication of ECL Sensor
3. Results
3.1. Characterization of the NCDs and Ir–NCDs
3.2. ECL Performance of Ir–NCDs and Feasibility Study
3.3. Electrochemical Characterization of the Immunosensor
3.4. Optimization of Experimental Conditions
3.5. Performance of Proposed Biosensor
3.6. Application of ECL Bacterial Sensor in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Qi, W.; Xu, G. Recent Advances in Electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Xu, G. Applications and Trends in Electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef] [PubMed]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. A Brief Review on Miniaturized Electrochemiluminescence Devices: From Fabrication to Applications. Curr. Opin. Electrochem. 2021, 30, 100800. [Google Scholar] [CrossRef]
- Lv, W.; Ye, H.; Yuan, Z.; Liu, X.; Chen, X.; Yang, W. Recent Advances in Electrochemiluminescence-Based Simultaneous Detection of Multiple Targets. TrAC Trends Anal. Chem. 2020, 123, 115767. [Google Scholar] [CrossRef]
- Swanick, K.N.; Ladouceur, S.; Zysman-Colman, E.; Ding, Z. Self-Enhanced Electrochemiluminescence of an Iridium (III) Complex: Mechanistic Insight. Angew. Chem. Int. Ed. 2012, 124, 11241–11244. [Google Scholar]
- Xu, Z.H.; Gao, H.; Zhang, N.; Zhao, W.; Cheng, Y.X.; Xu, J.J.; Chen, H.Y. Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium (III) Complex with High Electrochemiluminescence Efficiency. Anal. Chem. 2020, 93, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Doeven, E.H.; Wilson, D.J.; Kerr, E.; Hayne, D.J.; Hogan, C.F.; Yang, W.; Pham, T.T.; Francis, P.S. Co-Reactant Electrogenerated Chemiluminescence of Iridium (III) Complexes Containing an Acetylacetonate Ligand. ChemElectroChem 2017, 4, 1797–1808. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lin, J.; Guo, Y.; Zhang, S. A Novel Electrochemiluminescent Reagent of Cyclometalated Iridium Complex-Based DNA Biosensor and its Application in Cancer Cell Detection. Chem. Commun. 2011, 47, 4442–4444. [Google Scholar] [CrossRef]
- Newman, B.; Chen, L.; Henderson, L.C.; Doeven, E.H.; Francis, P.S.; Hayne, D.J. Water-Soluble Iridium (III) Complexes Containing Tetraethylene-Glycol-Derivatized Bipyridine Ligands for Electrogenerated Chemiluminescence Detection. Front Chem. 2020, 8, 583631. [Google Scholar] [CrossRef]
- Li, M.J.; Jiao, P.; Lin, M.; He, W.; Chen, G.N.; Chen, X. High Electrochemiluminescence of a New Water-Soluble Iridium (III) Complex for Determination of Antibiotics. Analyst 2011, 136, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Zanarini, S.; Rampazzo, E.; Bonacchi, S.; Juris, R.; Marcaccio, M.; Montalti, M.; Paolucci, F.; Prodi, L. Iridium Doped Silica–PEG Nanoparticles: Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media. J. Am. Chem. Soc. 2009, 131, 14208–14209. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Wei, D.; Ju, H.; Du, Y.; Ma, H.; Wei, Q. Aggregation-Induced Electrochemiluminescence Bioconjugates of Apoferritin-Encapsulated Iridium (III) Complexes for Biosensing Application. Anal. Chem. 2020, 93, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; He, Y.; Zhao, J.; Chen, S.; Yuan, R. Ratiometric Electrochemiluminescence Biosensor Based on Ir Nanorods and Cds Quantum Dots for the Detection of Organophosphorus Pesticides. Sens. Actuators B Chem. 2021, 34, 130008. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Mann, D.A.; Deng, X. Global Spread of Salmonella enteritidis via Centralized Sourcing and International Trade of Poultry Breeding Stocks. Nat. Commun. 2021, 12, 5109. [Google Scholar] [CrossRef]
- Ranjbar, R.; Dehkordi, F.S.; Heiat, M. The Frequency of Resistance Genes in Salmonella enteritidis Strains Isolated from Cattle. Iran. J. Public Health 2020, 49, 968. [Google Scholar] [CrossRef]
- Duguid, J.P.; North, R.A. Eggs and Salmonella Food-Poisoning: An Evaluation. J. Med. Microbiol. 1991, 34, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurjayadi, M.; Pertiwi, Y.; Islami, N.; Azizah, N.; Efrianti, U.; Saamia, V.; Wiranatha, I.; Nastassya, L.; El-Enshasye, H.A. Detection of the Salmonella Typhi Bacteria in Contaminated Egg Using Real-Time PCR to Develop Rapid Detection of Food Poisoning bacteria. Biocatal. Agric. Biotechnol. 2019, 20, 101214. [Google Scholar] [CrossRef]
- Aljamali, N.M. Review on Food Poisoning (Types, Causes, Symptoms, Diagnosis, Treatment). Glob. Acad. J. Pharm. Drug Res. 2021, 3, 54–61. [Google Scholar]
- Hamad, R.; Saleh, A.A. Incidence of Some Food Poisoning Bacteria in Raw Meat Products with Molecular Detection of Salmonella in Al Beida City, Libya. Alex. J. Vet. Sci. 2019, 61, 11–17. [Google Scholar]
- Walker, N.; Li, S.; Strauss, H.; Pokharel, S. Salmonella typhimurium DT 104 Response to Lytic Bacteriophage and Lactobionic Acid on Raw Chicken Breast. Food Microbiol. 2021, 100, 103862. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella Detection in Commercially Prepared Livestock Feed and the Raw Ingredients and Equipment Used to Manufacture the Feed: A Systematic Review and Meta-Analysis. Prev. Vet. Med. 2022, 198, 105546. [Google Scholar] [CrossRef] [PubMed]
- Zeinhom, M.M.A.; Wang, Y.; Sheng, L.; Du, D.; Li, L.; Zhu, M.J.; Lin, Y. Smart Phone Based Immunosensor Coupled with Nanoflower Signal Amplification for Rapid Detection of Salmonella enteritidis in Milk, Cheese and Water. Sens. Actuators B Chem. 2018, 261, 75–82. [Google Scholar] [CrossRef]
- Gu, K.; Song, Z.; Zhou, C.; Ma, P.; Li, C.; Lu, Q.; Liao, Z.; Huang, Z.; Tang, Y.; Li, H. Development of Nanobody-Horseradish Peroxidase-Based Sandwich ELISA to Detect Salmonella enteritidis in Milk And in vivo Colonization in Chicken. J. Nanobiotechnol. 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Pulingam, T.; Appaturi, J.N.; Zifruddin, A.N.; Teh, S.J.; Lim, T.W.; Ibrahim, F.; Leo, B.F.; Thong, K.L. Carbon Nanotube-Based Aptasensor for Sensitive Electrochemical Detection of Whole-Cell Salmonella. Anal. Biochem. 2018, 554, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zheng, L.; Kong, L.; Lu, Z.; Tao, Y.; Feng, Z.; Lv, F.; Meng, F.; Bie, X. Development of A Rapid Detection Method for Real-Time Fluorescent Quantitative PCR of Salmonella spp. and Salmonella enteritidis in Ready-to-Eat Fruits and Vegetables. LWT—Food Sci. Technol. 2021, 149, 111837. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, H.; Ma, S.; Men, S.; Li, Q.; Yang, X.; Wang, H.; Zhang, A. A Label-Free Ultrasensitive Fluorescence Detection of Viable Salmonella enteritidis Using Enzyme-Induced Cascade Two-Stage Toehold Strand-Displacement-Driven Assembly of G-quadruplex DNA. Biosens. Bioelectron. 2016, 80, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liang, Y.; Su, Y.; Lai, W.; Zhang, C. Cloth-based Closed Bipolar Electrochemiluminescence DNA Sensors (Ccbedss): A New Class of Electrochemiluminescence Gene Sensors. J. Lumin. 2021, 238, 118209. [Google Scholar] [CrossRef]
- D’souza, D.; Jaykus, L.A. Nucleic Acid Sequence Based Amplification for the Rapid and Sensitive Detection of Salmonella enterica from Foods. J. Appl. Microbiol. 2003, 95, 1343–1350. [Google Scholar] [CrossRef]
- Filippini, G.; Amato, F.; Rosso, C.; Ragazzon, G.; Vega-Peñaloza, A.; Companyó, X.; Dell’Amico, L.; Bonchio, M.; Prato, M. Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent Catalysis in Aqueous Media. Chem 2020, 6, 3022–3030. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, Z.; Song, J.; Huang, Q.; Zhu, S.; Huang, X.; Wei, Y. Tunable Nanogap Devices for Ultra-Sensitive Electrochemical Impedance Biosensing. Anal. Chim. Acta 2016, 905, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; He, L. Development of a filtration-based SERS mapping platform for specific screening of Salmonella enterica serovar Enteritidis. Anal. Bioanal. Chem. 2019, 411, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Hwang, H.J.; Kim, J.H. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction. Foodborne Pathog. Dis. 2017, 10, 14. [Google Scholar] [CrossRef]
- Li, F.; Li, F.; Chen, B.; Zhou, B.; Yu, P.; Yu, S.; Lai, W.; Xu, H. Sextuplex PCR Combined with Immunomagnetic Separation and PMA Treatment for Rapid Detection and Specific Identification of Viable Salmonella spp., Salmonella Enterica Serovars Paratyphi B, Salmonella Typhimurium and Salmonella enteritidis in Raw Meat. Food Control 2020, 40, 12784. [Google Scholar] [CrossRef]
- Ren, J.; Man, Y.; Li, A.; Liang, G.; Jin, X.; Pan, L. Detection of Salmonella enteritidis and Salmonella typhimurium in Foods Using a Rapid, Multiplex Real-Time Recombinase Polymerase Amplification Assay. J. Food Saf. 2020, 40, 12784. [Google Scholar] [CrossRef]
- Zang, C.L.; Zhang, M.D.; Zhang, Y.; Li, Y.S.; Liu, K.; Xie, N.N.; Sun, C.Y.; Zhang, X.G. Rapid Label-Free Detection of Salmonella Enterica with Biolayer Interferometry. J. Food Saf. 2021, 41, e12896. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A.; Yang, Y.; Lei, C.; Cheng, G.; Zou, W.; Zeng, J.; Chen, Y.; Wang, H. Sensitive and Rapid Detection of Salmonella Enterica Serovar Indiana by Crosspriming Amplification. J. Microbiol. Methods 2018, 153, 24–30. [Google Scholar]
- Draz, M.; Lu, X. Development of a Loop Mediated Isothermal Amplification (LAMP)—Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis. Theranostics 2016, 6, 522–532. [Google Scholar] [CrossRef]
- Lavu, P.S.R.; Mondal, B.; Ramlal, S.; Murali, H.S.; Batra, H.V. Selection and Characterization of Aptamers Using a Modified Whole Cell Bacterium SELEX for the Detection of Salmonella Enterica Serovar Typhimurium. ACS Comb. Sci. 2016, 18, 292–301. [Google Scholar] [CrossRef]
Added (CFU/mL) | Found (CFU/mL) | Recovered (%) | RSD (%) |
---|---|---|---|
1.100 × 105 | 110.0% | ||
1 × 105 | 1.012 × 105 | 101.2% | 6.214% |
0.9756 × 105 | 97.56% | ||
1.040 × 106 | 104.0% | ||
1 × 106 | 1.005 x106 | 100.5% | 2.403% |
0.9932 × 106 | 99.32% | ||
0.9780 × 107 | 97.80% | ||
1 × 107 | 1.041 × 107 | 104.1% | 4.714% |
0.9499 × 107 | 94.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Doeven, E.H.; Chen, L.; Yao, Y.; Wang, Y.; Lin, B.; Zeng, Y.; Li, L.; Qian, Z.; Guo, L. Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing. Biosensors 2023, 13, 459. https://doi.org/10.3390/bios13040459
Huang Y, Doeven EH, Chen L, Yao Y, Wang Y, Lin B, Zeng Y, Li L, Qian Z, Guo L. Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing. Biosensors. 2023; 13(4):459. https://doi.org/10.3390/bios13040459
Chicago/Turabian StyleHuang, Yueyue, Egan H. Doeven, Lifen Chen, Yuanyuan Yao, Yueliang Wang, Bingyong Lin, Yanbo Zeng, Lei Li, Zhaosheng Qian, and Longhua Guo. 2023. "Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing" Biosensors 13, no. 4: 459. https://doi.org/10.3390/bios13040459
APA StyleHuang, Y., Doeven, E. H., Chen, L., Yao, Y., Wang, Y., Lin, B., Zeng, Y., Li, L., Qian, Z., & Guo, L. (2023). Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing. Biosensors, 13(4), 459. https://doi.org/10.3390/bios13040459