Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instrumentation
2.3. The Synthesis of Double-Ligand EC-MOF M-H-T and Cu-H-T@rGO Nanocomposite
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Selection of Double-Ligand EC-MOF M-H-T Materials and the Feasibility of the Cu-H-T@rGO/GCE Electrochemical Sensors
3.2. Characterization of Modified Electrode Material
3.3. Electrochemical Characterization
3.4. Optimization of the Experimental Parameters
3.5. Effect of Scan Rate
3.6. Analytical Performance
3.7. Reproducibility, Stability and Interference Performance of the Cu-H-T@rGO/GCE Sensor during BPA Detection
3.8. Practical Applications of the BPA Detection by the Cu-H-T@rGO/GCE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hosono, N.; Terashima, A.; Kusaka, S.; Matsuda, R.; Kitagawa, S. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nat. Chem. 2019, 11, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Ikram, M.; Ullah, M.; Wu, H.; Shi, K. Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem. Eng. J. 2020, 395, 125216. [Google Scholar] [CrossRef]
- Majewski, M.B.; Peters, A.W.; Wasielewski, M.R.; Hupp, J.T.; Farha, O.K. Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett. 2018, 3, 598–611. [Google Scholar] [CrossRef]
- Makhanya, N.; Oboirien, B.; Ren, J.; Musyoka, N.; Sciacovelli, A. Recent advances on thermal energy storage using metal-organic frameworks (MOFs). J. Energy Storage 2021, 34, 102179. [Google Scholar] [CrossRef]
- Deng, X.; Hu, J.-Y.; Luo, J.; Liao, W.-M.; He, J. Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Top. Curr. Chem. 2020, 378, 27. [Google Scholar] [CrossRef]
- Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; et al. pi-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465. [Google Scholar] [CrossRef]
- Sun, L.; Campbell, M.G.; Dinca, M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579. [Google Scholar] [CrossRef]
- Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Electrochemical oxygen reduction catalysed by Ni-3(hexaiminotriphenylene)(2). Nat. Commun. 2016, 7, 10942. [Google Scholar] [CrossRef] [Green Version]
- Sheberla, D.; Bachman, J.C.; Elias, J.S.; Sun, C.J.; Shao-Horn, Y.; Dinca, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224. [Google Scholar] [CrossRef]
- Yao, M.S.; Lv, X.J.; Fu, Z.H.; Li, W.H.; Deng, W.H.; Wu, G.D.; Xu, G. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. Angew. Chem. Int. Ed. 2017, 56, 16510–16514. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-Transduced Chemical Sensors Based on Two Dimensional Nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Oh, I.; Joo, S.H.; Seo, Y.-S.; Lee, S.H.; Seong, W.K.; Kim, Y.J.; Hwang, J.; Kwak, S.K.; Yoo, J.-W.; et al. Synthesis of a Copper 1,3,5-Triamino-2,4,6-benzenetriol Metal-Organic Framework. J. Am. Chem. Soc. 2020, 142, 18346–18354. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.-Q.; Wang, W.-Q.; Zhan, H.-B.; Cao, L.-A.; Ye, X.-L.; Zheng, J.-J.; Kumar, P.N.; Chiranjeevulu, K.; Deng, W.-H.; Wang, G.-E.; et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2021, 14, 438–443. [Google Scholar] [CrossRef]
- Yao, M.S.; Zheng, J.J.; Wu, A.Q.; Xu, G.; Sanjog, S.N.; Gen, Z.; Masahiko, T.; Shigeyoshi, S.; Satoshi, H.; Kenichi, O.; et al. A Dual-Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angew. Chem. Int. Ed. 2019, 59, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok Onn, W.; Lay Woon, L.; Huay Leng, S. Dietary exposure assessment of infants to bisphenol A from the use of polycarbonate baby milk bottles. Food Addit. Contam. 2005, 22, 280–288. [Google Scholar]
- Cao, P.; Zhong, H.N.; Qiu, K.; Li, D.; Wu, G.; Sui, H.X.; Song, Y. Exposure to bisphenol A and its substitutes, bisphenol F and bisphenol S from canned foods and beverages on Chinese market. Food Control 2020, 120, 107502. [Google Scholar] [CrossRef]
- Manolis, N.T.; Vasiliki, K.; Elena, V.; Marina, G.; Matthaios, K.; Polychronis, S.; Christina, T.; Ioannis, T.; Apostolos, K.R.; Aristidis, M.T. Bisphenol A in soft drinks and canned foods and data evaluation. Food Addit. Contam. Part B 2017, 10, 85–90. [Google Scholar]
- Akkaraboyina Lakshmi, L.; Kumari, K.G.B.; Prasad, K.R.S.; Pradeep Kumar, B. Nickel and Tungsten Bimetallic Nanoparticles Modified Pencil Graphite Electrode: A High-performance Electrochemical Sensor for Detection of Endocrine Disruptor Bisphenol A. Electroanalysis 2020, 33, 559–837. [Google Scholar]
- Yunfei, W.; Yuanyuan, L.; Shuang, Z.; Ting, W.; Xuming, Z.; Chunyuan, T.; Feng, L.; Shou-Qing, N.; Xiuli, F. Enhanced electrochemical sensor based on gold nanoparticles and MoS2 nanoflowers decorated ionic liquid-functionalized graphene for sensitive detection of bisphenol A in environmental water. Microchem. J. 2020, 161, 105769. [Google Scholar]
- Weiwei, M.; Shuangfeng, W.; Chenchen, L.; Xucong, L.; Zenghong, X. Towards online specific recognition and sensitive analysis of bisphenol A by using AuNPs@aptamer hybrid-silica affinity monolithic column with LC-MS. Talanta 2020, 219, 121275. [Google Scholar]
- Rocío, B.P.V.; Gabriela, A.I.; Graciela, M.E. Chemometrics-assisted cyclodextrin-enhanced excitation-emission fluorescence spectroscopy for the simultaneous green determination of bisphenol A and nonylphenol in plastics. Talanta 2015, 143, 162–168. [Google Scholar]
- Yajing, L.; Lizheng, F.; Muhammad Sajid Hamid, A.; Zhiming, L.; Weixing, S.; Shuqing, C. Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Anal. Methods 2013, 5, 6106–6113. [Google Scholar]
- Changjiang, H.; Lixia, Z.; Fanglan, G.; Dan, W.; Liang-Hong, G. Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 8795–8804. [Google Scholar]
- Somayeh, T.; Hadi, B.; Fariba Garkani, N.; Kaiqiang, Z.; Quyet Van, L.; Ho Won, J.; Soo Young, K.; Mohammadreza, S. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. Sensors 2020, 20, 3364. [Google Scholar]
- Tian, Y.; Deng, P.; Wu, Y.; Liu, J.; Li, J.; Li, G.; He, Q. High sensitive voltammetric sensor for nanomolarity vanillin detection in food samples via manganese dioxide nanowires hybridized electrode. Microchem. J. 2020, 157, 104885. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Zandavar, H.; Rahimi, M.; Tooski, H.F.; Rajabi, H.R.; Rahimi-Nasrabadi, M.; Sohouli, E.; Larijani, B.; Pourmortazavi, S.M. Photocatalytic reduction of imatinib mesylate and imipenem on electrochemical synthesized Al2W3O12 nanoparticle: Optimization, investigation of electrocatalytic and antimicrobial activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124254. [Google Scholar] [CrossRef]
- Baezzat, M.R.; Banavand, F.; Hakkani, S.K. Sensitive voltammetric detection of indomethacin using TiO2 nanoparticle modified carbon ionic liquid electrode. Anal. Bioanal. Chem. Res. 2020, 7, 89–98. [Google Scholar]
- Sohouli, E.; Ghalkhani, M.; Rostami, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A noble electrochemical sensor based on TiO2@CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Mater. Sci. Eng. C 2020, 117, 111300. [Google Scholar] [CrossRef]
- Hosseini, A.; Sohouli, E.; Gholami, M.; Sobhani-Nasab, A.; Mirhosseini, S.A. Electrochemical determination of ciprofloxacin using glassy carbon electrode modified with CoFe2o4-MWCNT. Anal. Bioanal. Electrochem. 2019, 11, 996–1008. [Google Scholar]
- da Silva, C.T.P.; Fernanda Reis, V.; Laís Weber, A.; Joziane Gimenes, M.; Murilo Pereira, M.; Silvia Luciana, F.; Eduardo, R.; Emerson Marcelo, G.; Andrelson Wellington, R. AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. New J. Chem. 2016, 40, 8872–8877. [Google Scholar] [CrossRef]
- Huang, X.Z.; Huang, D.H.; Chen, J.Y.; Ruihong, Y.; Qian, L.; Sheng, C. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal. Bioanal. Chem. 2020, 412, 849–860. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. Electrochim. Acta 2019, 296, 683–692. [Google Scholar] [CrossRef]
- Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. Biosensors 2021, 11, 55. [Google Scholar] [CrossRef]
- Arshad, R.; Barani, M.; Rahdar, A.; Sargazi, S.; Cucchiarini, M.; Pandey, S.; Kang, M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. Biosensors 2021, 11, 97. [Google Scholar] [CrossRef]
- Sohouli, E.; Khosrowshahi, E.M.; Radi, P.; Naghian, E.; Rahimi-Nasrabadi, M.; Ahmadi, F. Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine. J. Electroanal. Chem. 2020, 877, 114503. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, P.; Wu, Y.; Li, J.; Liu, J.; Li, G.; He, Q. MnO2 Nanowires-Decorated Reduced Graphene Oxide Modified Glassy Carbon Electrode for Sensitive Determination of Bisphenol A. J. Electrochem. Soc. 2020, 167, 046514. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, L.; Xu, C. Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Anal. Chem. 2015, 87, 3438–3444. [Google Scholar] [CrossRef]
- Michael, K.; Lukasz, M.; Aileen, M.E.; Claudia, G.D.; Robert, M.S.; Zheng, M.; Katherine, A.M. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733. [Google Scholar]
- Goulart, L.A.; Alves, S.A.; Mascaro, L.H. Photoelectrochemical degradation of bisphenol A using Cu doped WO3 electrodes. J. Electroanal. Chem. 2019, 839, 123–133. [Google Scholar] [CrossRef]
- Eftekhari, A.; Dalili, M.; Karimi, Z.; Rouhani, S.; Hasanzadeh, A.; Rostamnia, S.; Khaksar, S.; Idris, A.O.; Karimi-Maleh, H.; Yola, M.L.; et al. Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Food Chem. 2021, 358, 129763. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, S.; Zhang, Q.; Li, Y.; Wang, H. Layer-by-layer assembled triphenylene-based MOFs films for electrochromic electrode. Inorg. Chem. Commun. 2021, 123, 108354. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Chen, L. An ultrasensitive electrochemical bisphenol A sensor based on hierarchical Ce-metal-organic framework modified with cetyltrimethylammonium bromide. Sens. Actuators B Chem. 2018, 261, 425–433. [Google Scholar] [CrossRef]
- Laviron, E. Surface linear potential sweep voltammetry: Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 395–402. [Google Scholar] [CrossRef]
- Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- de Rooij, D.M.R. Electrochemical Methods: Fundamentals and Applications. Anti-Corros. Methods Mater. 2003, 50, A25. [Google Scholar] [CrossRef]
- Niu, X.; Yang, W.; Wang, G.; Ren, J.; Guo, H.; Gao, J. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim. Acta 2013, 98, 167–175. [Google Scholar] [CrossRef]
- Poorahong, S.; Thammakhet, C.; Thavarungkul, P.; Limbut, W.; Numnuam, A.; Kanatharana, P. Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchim. Acta 2012, 176, 91–99. [Google Scholar] [CrossRef]
- Nikahd, B.; Khalilzadeh, M.A. Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J. Mol. Liq. 2016, 215, 253–257. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, Y.-P.; Yao, Y.-Y.; Wang, Z.-F.; Duan, X.-M.; Xu, J.-K. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin. Chem. Lett. 2014, 25, 517–522. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Lv, Q.; Xi, G.; Bai, H.; Zhang, Q. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochem. Commun. 2016, 68, 104–107. [Google Scholar] [CrossRef]
Modified Electrode | Method | Linear Range (mol·L−1) | LOD (nmol·L−1) | Reference |
---|---|---|---|---|
AuNP/SGrNF/GCE | LSV | 8.0 × 10−8–2.5 × 10−4 | 35.0 | [48] |
PANINR/MWCNT/PGE | Amp | 1.0 × 10−6–4.0 × 10−4 | 10.0 | [49] |
NiO/CNT/IL/CPE | SWV | 8.0 × 10−8–5.0 × 10−4 | 40.0 | [50] |
SWCNT/PEDOT/GCE | CV | 1.0 × 10−7–5.8 × 10−6 | 32.0 | [51] |
AuNP/Cu-MOF/CPE | DPV | 2.0 × 10−4–1.0 × 10−3 | 37.8 | [31] |
Ce-Ni-MOF/MWCNTs/GCE | DPV | 1.0 × 10−7–1.0 × 10−4 | 7.8 | [32] |
Cu-H-T@rGO/GCE | DPV | 5.0 × 10−8–1.0 × 10−4 | 5.2 | This work |
Coexisting Substances | Tolerance Limit (mmol·L−1) | Relative Deviation (%) |
---|---|---|
NaNO3 | 10 | 1.8 |
MgCl2 | 10 | 2.1 |
K2CO3 | 10 | 1.6 |
(NH4)2SO4 | 10 | 2.7 |
POP | 0.5 | 4.6 |
PNP | 0.5 | 2.3 |
TBBPA | 0.5 | 3.8 |
Sample | Measured (μmol·L−1) | Added (μmol·L−1) | Found (μmol·L−1) | RSD (%) | Recovery (%) |
---|---|---|---|---|---|
Beverage bottle Ⅰ | 0.00 | 0.80 | 0.78 | 2.3 | 97.5 |
3.00 | 2.96 | 3.1 | 98.6 | ||
50.00 | 51.07 | 4.5 | 102.1 | ||
Beverage bottle Ⅱ | 0.00 | 0.80 | 0.75 | 0.8 | 93.8 |
3.00 | 3.13 | 1.7 | 104.3 | ||
50.00 | 48.55 | 4.2 | 97.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, R.-H.; Chen, J.-Y.; Huang, D.-H.; Wang, Y.-J.; Chen, S. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Biosensors 2022, 12, 367. https://doi.org/10.3390/bios12060367
Ye R-H, Chen J-Y, Huang D-H, Wang Y-J, Chen S. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Biosensors. 2022; 12(6):367. https://doi.org/10.3390/bios12060367
Chicago/Turabian StyleYe, Rui-Hong, Jin-Yang Chen, Di-Hui Huang, Yan-Jun Wang, and Sheng Chen. 2022. "Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA" Biosensors 12, no. 6: 367. https://doi.org/10.3390/bios12060367
APA StyleYe, R. -H., Chen, J. -Y., Huang, D. -H., Wang, Y. -J., & Chen, S. (2022). Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Biosensors, 12(6), 367. https://doi.org/10.3390/bios12060367