Next Article in Journal
Layered Double Hydroxide-Based Nanomaterials-From Fundamentals to Applications
Previous Article in Journal
Silica Nanoparticles Provoke Cell Death Independent of p53 and BAX in Human Colon Cancer Cells
Previous Article in Special Issue
Enhancement in Photoelectrochemical Performance of Optimized Amorphous SnS2 Thin Film Fabricated through Atomic Layer Deposition
Article Menu

Export Article

Open AccessArticle

Preparation of TiO2 and Fe-TiO2 with an Impinging Stream-Rotating Packed Bed by the Precipitation Method for the Photodegradation of Gaseous Toluene

Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, China
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(8), 1173; https://doi.org/10.3390/nano9081173 (registering DOI)
Received: 21 July 2019 / Revised: 13 August 2019 / Accepted: 14 August 2019 / Published: 16 August 2019
(This article belongs to the Special Issue Photocatalytic Nanomaterials)
  |  
PDF [6050 KB, uploaded 16 August 2019]
  |     |  

Abstract

Nano-TiO2 has always been one of the most important topics in the research of photocatalysts due to its special activity and stability. However, it has always been difficult to obtain nano-TiO2 with high dispersion, a small particle size and high photocatalytic activity. In this paper, nano-TiO2 powder was prepared by combining the high-gravity technique and direct precipitation method in an impinging stream-rotating packed bed (IS-RPB) reactor followed by Fe3+ in-situ doping. TiOSO4 and NH3·H2O solutions were cut into very small liquid microelements by high-speed rotating packing, and the mass transfer and microscopic mixing of the nucleation and growth processes of nano-TiO2 were strengthened in IS-RPB, which was beneficial to the continuous production of high quality nano-TiO2. Pure TiO2 and iron-doped nano-TiO2 (Fe-TiO2) were obtained in IS-RPB and were investigated by means of X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) and Brunauer–Emmett–Teller (BET) analysis, which found that pure TiO2 had a particle size of about 12.5 nm, good dispersibility and a complete anatase crystal at the rotating speed of packing of 800 rpm and calcination temperature of 500 °C. The addition of Fe3+ did not change the crystalline structure of TiO2. Iron was highly dispersed in TiO2 without the detection of aggregates and was found to exist in a positive trivalent form by XPS. With the increase of iron doping, the photoresponse range of TiO2 to visible light was broadened from 3.06 eV to 2.26 eV. The degradation efficiency of gaseous toluene by Fe-TiO2 under ultraviolet light was higher than that of pure TiO2 and commercial P25 due to Fe3+ effectively suppressing the recombination of TiO2 electrons and holes; the highest efficiency produced by 1.0% Fe-TiO2 was 95.7%. View Full-Text
Keywords: high-gravity technique; impinging stream-rotating packed bed; photocatalysis; precipitation method; nano titanium dioxide; doping; photocatalytic activity high-gravity technique; impinging stream-rotating packed bed; photocatalysis; precipitation method; nano titanium dioxide; doping; photocatalytic activity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Zeng, G.; Zhang, Q.; Liu, Y.; Zhang, S.; Guo, J. Preparation of TiO2 and Fe-TiO2 with an Impinging Stream-Rotating Packed Bed by the Precipitation Method for the Photodegradation of Gaseous Toluene. Nanomaterials 2019, 9, 1173.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top