Next Article in Journal
Synthesis of a Flower-Like g-C3N4/ZnO Hierarchical Structure with Improved CH4 Sensing Properties
Previous Article in Journal
Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12
Open AccessArticle

First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates

Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(5), 723; https://doi.org/10.3390/nano9050723
Received: 17 April 2019 / Revised: 4 May 2019 / Accepted: 7 May 2019 / Published: 10 May 2019
We have mostly performed vibrational studies of Type-II silicon-germanium clathrate alloys, namely, Si136-xGex (0 < x ≤ 128), using periodic density functional theory (DFT). Our computed lattice constant for various stoichiometric amount, namely, x, of Ge agrees to some extent with the observed X-ray diffraction (XRD) data, along with monotonically increasing dependence on x. According to our bandgap energy calculation via Vienna ab initio simulation package (VASP), Si128Ge8 has a “nearly-direct” bandgap of approximately 1.27 eV, which agrees well with the previously calculated result (~1.23 eV), which was obtained using the Cambridge sequential simulation total energy package (CASTEP). Most of our first-principles calculations focus on exploring the low-energy transverse acoustic (TA) phonons that contribute dominantly to the induction of negative thermal expansion (NTE) behavior. Moreover, our work has predicted that the Si104Ge32 framework exhibits NTE in the temperature range of 3–80 K, compared to the temperature regime (10–140 K) of NTE observed in such pure Si136. It is posited that the increased number of Ge–Ge bonds may weaken the NTE effect substantially, as the composition, which is denoted as x, in Si136-xGex is elevated from 32 (or 40) to 96 (or 104). View Full-Text
Keywords: alloy clathrate; mode Grüneisen parameter; negative thermal expansion; quasi-harmonic approximation alloy clathrate; mode Grüneisen parameter; negative thermal expansion; quasi-harmonic approximation
Show Figures

Figure 1

MDPI and ACS Style

Xue, D.; Myles, C.W. First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates. Nanomaterials 2019, 9, 723.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop