Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dyke, W.P.; Dolan, W.W. Field emission. Adv. Electron. Electron Phys. 1956, 8, 89–185. [Google Scholar]
- Stratton, R. Theory of field emission from semiconductors. Phys. Rev. 1962, 125, 67–82. [Google Scholar] [CrossRef]
- Milne, W.I.; Teo, K.B.K.; Amaratunga, G.A.J.; Legagneux, P.; Gangloff, L.; Schnell, J.-P.; Semet, V.; Binh, V.T.; Groening, O. Carbon nanotubes as field emission sources. J. Mater. Chem. 2004, 14, 933–943. [Google Scholar] [CrossRef]
- Xu, N.; Huq, S.E. Novel cold cathode materials and applications. Mater. Sci. Eng. 2005, 48, 47–189. [Google Scholar] [CrossRef]
- Lilienfeld, J.E. The auto-electronic discharge and its application to the construction of a new form of X-ray tube. Am. J. Roentgenol. 1922, 9, 172–179. [Google Scholar]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 199, 173–181. [Google Scholar]
- Skolnik, M. Role of radar in microwaves. IEEE Trans. Microw. Theory Techn. 2002, 50, 625–632. [Google Scholar] [CrossRef]
- Spindt, C.; Armstrong, C.; Smith, C.; Gannon, B.; Whaley, D. Application of field emitter arrays to microwave power amplifiers. IEEE Trans. Plasma Sci. 2000, 28, 727–747. [Google Scholar] [CrossRef]
- Milne, W.I.; Teo, K.B.K.; Minoux, E.; Groening, O.; Gangloff, L.; Hudanski, L.; Schnell, J.-P.; Dieumegard, D.; Peauger, F.; Bu, I.Y.Y. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. 2006, 24, 345–348. [Google Scholar] [CrossRef]
- Adachi, H. Approach to a stable field emission electron source. Microscopy 1985, 2, 473–487. [Google Scholar]
- Feist, A.; Echternkamp, K.E.; Schauss, J.; Yalunin, S.V.; Schäfer, S.; Ropers, C. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 2015, 521, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, A.; Srituravanich, W. Review on micro- and nanolithography techniques and their applications. Chem. Eng. J. 2012, 16, 38–55. [Google Scholar] [CrossRef]
- Melngailis, J.; Mondelli, A.A.; Berry, I.L.; Mohondro, R. A review of ion projection lithography. J. Vac. Sci. Technol. 1998, 16, 927–957. [Google Scholar] [CrossRef]
- Murphy, E.L.; Good, R.H. Thermionic emission, field emission, and the transition region. Phys. Rev. 1956, 102, 1464–1473. [Google Scholar] [CrossRef]
- Jensen, K.L. A tutorial on electron sources. IEEE Trans. Plasma Sci. 2018, 46, 1881–1899. [Google Scholar] [CrossRef]
- Crewe, A.V.; Eggenberger, D.N.; Wall, J.; Welter, L.M. Electron gun using a field emission source. Rev. Sci. Instrum. 1968, 39, 576–583. [Google Scholar] [CrossRef]
- Gadzuk, J.W.; Plummer, E.W. Field emission energy distribution (FEED). Rev. Mod. Phys. 1973, 45, 487–545. [Google Scholar] [CrossRef]
- Kumikov, V.K.; Khokonov, K.B. On the measurement of surface free energy and surface tension of solid metals. J. Appl. Phys. 1983, 54, 1346–1350. [Google Scholar] [CrossRef]
- Brodie, I.; Spindt, C.A. Vacuum microelectronics. Adv. Electron. Electron Phys. 1992, 83, 1–106. [Google Scholar]
- Fursey, G.N. Field emission in vacuum micro-electronics. Appl. Surf. Sci. 2003, 215, 113–134. [Google Scholar] [CrossRef]
- Muller, E.W.; Bahader, K. Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys. Rev. 1956, 102, 624–631. [Google Scholar] [CrossRef]
- Grifoni, M.; Hänggi, P. Driven quantum tunneling. Phys. Rep. 1998, 304, 229–354. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Kuchibhatla, S.V.; Karakoti, A.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–913. [Google Scholar] [CrossRef]
- Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620. [Google Scholar] [CrossRef] [PubMed]
- de Heer, W.A.; Châtelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Afsal, M.; Lou, S.; Chen, H.; Chen, C.; Lee, C.; Chen, L.; Tai, N.; Lin, I. Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core–shell heterostructured nanorods. Small 2014, 10, 179–185. [Google Scholar] [CrossRef]
- Xu, J.; Hou, G.; Li, H.; Zhai, T.; Dong, B.; Yan, H.; Yu, B.; Bando, Y.; Golberg, D. Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Mater. 2013, 5, 53–62. [Google Scholar] [CrossRef]
- Tang, S.; Tang, J.; Chiu, T.-W.; Uzuhashi, J.; Tang, D.-M.; Ohkubo, T.; Mitome, M.; Uesugi, F.; Takeguchi, M.; Qin, L.-C. A controllable and efficient method for the fabrication of a single HfC nanowire field-emission point electron source aided by low keV FIB milling. Nanoscale 2020, 12, 16770–16774. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, J.; Uzuhashi, J.; Ohkubo, T.; Hayami, W.; Yuan, J.; Takeguchi, M.; Mitome, M.; Qin, L.-C. A stable LaB6 nanoneedle field-emission point electron source. Nanoscale Adv. 2021, 3, 2787–2792. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, J.; Wu, Y.; Chen, Y.-H.; Uzuhashi, J.; Ohkubo, T.; Qin, L.-C. Stable field-emission from a CeB6 nanoneedle point electron source. Nanoscale 2021, 13, 17156–17161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, S.; Hu, P.; Zhao, X.; Hong, C. Recent progress in synthesis, growth mechanisms, properties, and applications of silicon nitride nanowires. Ceram. Int. 2021, 47, 14944. [Google Scholar] [CrossRef]
- Grossman, L.N. High-temperature thermophysical properties of zirconium carbide. J. Am. Ceram. Soc. 1965, 45, 236–242. [Google Scholar] [CrossRef]
- Holleck, H. Material selection for hard coatings. J. Vac. Sci. Technol. A 1986, 4, 2661–2669. [Google Scholar] [CrossRef]
- Landwehr, S.E.; Hilmas, G.E.; Fahrenholtz, W.G.; Talmy, I.G.; Wang, H. Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets. Mater. Chem. Phys. 2009, 115, 690–695. [Google Scholar] [CrossRef]
- Mackie, W.A.; Hartman, R.L.; Anderson, M.A.; Davis, P.R. Transition metal carbides for use as field emission cathodes. J. Vac. Sci. Technol. B 1994, 12, 722–726. [Google Scholar] [CrossRef]
- Mackie, W.; Hinrichs, C.; Davis, P. Preparation and characterization of zirconium carbide field emitters. IEEE Trans. Electron Devices 1989, 36, 2697–2702. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, J.; Tang, S.; Chen, Y.-H.; Chiu, T.-W.; Takeguchi, M.; Qin, L.-C. Stable field emission from single-crystalline zirconium carbide nanowires. Nanomaterials 2024, 1567, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Young, R.D. Theoretical total-energy distribution of field-emitted electrons. Phys. Rev. 1959, 113, 110–114. [Google Scholar] [CrossRef]
- Bronsgeest, M.S.; Barth, J.E.; Swanson, L.W.; Kruit, P. Probe current, probe size, and the practical brightness for probe forming systems. J. Vac. Sci. Technol. 2008, 26, 949–955. [Google Scholar] [CrossRef]
- Grillo, A.; Passacantando, M.; Zak, A.; Pelella, A.; Di Bartolomeo, A. WS2 Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. Small 2020, 16, 2002880. [Google Scholar] [CrossRef] [PubMed]
- Giubileo, F.; Passacantando, M.; Urban, F.; Grillo, A.; Iemmo, L.; Pelella, A.; Goosney, C.; LaPierre, R.; Di Bartolomeo, A. Field Emission Characteristics of InSb Patterned Nanowires. Adv. Electron. Mater. 2020, 6, 2000402. [Google Scholar] [CrossRef]
- Kasuya, K.; Katagiri, S.; Ohshima, T.; Kokubo, S. Stabilization of a tungsten ⟨310⟩ cold field emitter. J. Vac. Sci. Technol. B 2010, 28, 55–60. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Turchetti, M.; Keathley, P.D.; Berggren, K.K.; Browning, J. Long term field emission current stability characterization of planar field emitter devices. J. Vac. Sci. Technol. 2021, 39, 053201. [Google Scholar] [CrossRef]
- Calderón-Colón, X.; Geng, H.; Gao, B.; An, L.; Cao, G.; Zhou, O. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 2009, 20, 325707. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Tang, J.; Tang, S.; Chen, Y.-H.; Chiu, T.-W.; Takeguchi, M.; Hashimoto, A.; Qin, L.-C. Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials 2025, 15, 93. https://doi.org/10.3390/nano15020093
Wu Y, Tang J, Tang S, Chen Y-H, Chiu T-W, Takeguchi M, Hashimoto A, Qin L-C. Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials. 2025; 15(2):93. https://doi.org/10.3390/nano15020093
Chicago/Turabian StyleWu, Yimeng, Jie Tang, Shuai Tang, You-Hu Chen, Ta-Wei Chiu, Masaki Takeguchi, Ayako Hashimoto, and Lu-Chang Qin. 2025. "Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source" Nanomaterials 15, no. 2: 93. https://doi.org/10.3390/nano15020093
APA StyleWu, Y., Tang, J., Tang, S., Chen, Y.-H., Chiu, T.-W., Takeguchi, M., Hashimoto, A., & Qin, L.-C. (2025). Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials, 15(2), 93. https://doi.org/10.3390/nano15020093