Tailoring the Spin Reorientation Transition of Co Films by Pd Monolayer Capping
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Co Growth on Ru(0001) in LEEM
3.2. Capping Co with Pd: Morphology
3.3. Capping Co with Pd: Magnetic Effects
3.4. Effects of the Hydrogen Exposure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen Sensors—A Review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Wang, B.; Sun, L.; Schneider-Ramelow, M.; Lang, K.-D.; Ngo, H.-D. Recent Advances and Challenges of Nanomaterials-Based Hydrogen Sensors. Micromachines 2021, 12, 1429. [Google Scholar] [CrossRef] [PubMed]
- Christmann, K. Interaction of Hydrogen with Solid Surfaces. Surf. Sci. Rep. 1988, 9, 1–163. [Google Scholar] [CrossRef]
- Conrad, H.; Ertl, G.; Latta, E.E. Adsorption of Hydrogen on Palladium Single Crystal Surfaces. Surf. Sci. 1974, 41, 435–446. [Google Scholar] [CrossRef]
- Lässer, R.; Klatt, K.-H. Solubility of Hydrogen Isotopes in Palladium. Phys. Rev. B 1983, 28, 748–758. [Google Scholar] [CrossRef]
- Carcia, P.F.; Meinhaldt, A.D.; Suna, A. Perpendicular Magnetic Anisotropy in Pd/Co Thin Film Layered Structures. Appl. Phys. Lett. 1985, 47, 178–180. [Google Scholar] [CrossRef]
- Munbodh, K.; Perez, F.A.; Lederman, D. Changes in Magnetic Properties of Co/Pd Multilayers Induced by Hydrogen Absorption. J. Appl. Phys. 2012, 111, 123919. [Google Scholar] [CrossRef]
- Lueng, C.; Lupo, P.; Schefer, T.; Metaxas, P.J.; Adeyeye, A.O.; Kostylev, M. Sensitivity of Ferromagnetic Resonance in PdCo Alloyed Films to Hydrogen Gas. Int. J. Hydrogen Energy 2019, 44, 7715–7724. [Google Scholar] [CrossRef]
- Schmid, A.K.; Mascaraque, A.; Santos, B. Gas Sensor. U.S. Patent 8826726B2, 2010. Available online: https://patents.google.com/patent/US8826726B2/en (accessed on 1 January 2024).
- Hong, J.I.; Sankar, S.; Berkowitz, A.E.; Egelhoff, W.F. On the Perpendicular Anisotropy of Co/Pd Multilayers. J. Magn. Magn. Mater. 2005, 285, 359–366. [Google Scholar] [CrossRef]
- Beauvillain, P.; Bounouh, A.; Chappert, C.; Mégy, R.; Ould-Mahfoud, S.; Renard, J.P.; Veillet, P.; Weller, D.; Corno, J. Effect of Submonolayer Coverage on Magnetic Anisotropy of Ultrathin Cobalt Films M/Co/Au(111) with M = Au, Cu, Pd. J. Appl. Phys. 1994, 76, 6078–6080. [Google Scholar] [CrossRef]
- Okamoto, S.; Kitakami, O.; Shimada, Y. Enhancement of Magnetic Anisotropy of Hydrogenated Pd/Co/Pd Trilayers. J. Magn. Magn. Mater. 2002, 239, 313–315. [Google Scholar] [CrossRef]
- Causer, G.L.; Kostylev, M.; Cortie, D.L.; Lueng, C.; Callori, S.J.; Wang, X.L.; Klose, F. In Operando Study of the Hydrogen-Induced Switching of Magnetic Anisotropy at the Co/Pd Interface for Magnetic Hydrogen Gas Sensing. ACS Appl. Mater. Interfaces 2019, 11, 35420–35428. [Google Scholar] [CrossRef] [PubMed]
- Schefer, T.A.; Cortie, D.L.; Kostylev, M. The Effect of Hydrogen Gas on Pd/[Co/Pd]30/Pd Multilayer Thin Films. J. Magn. Magn. Mater. 2022, 551, 169184. [Google Scholar] [CrossRef]
- Bauer, E. Surface Microscopy with Low Energy Electrons: LEEM. J. Electron Spectrosc. Relat. Phenom. 2020, 241, 146806. [Google Scholar] [CrossRef]
- Bracco, G.; Holst, B. Surface Science Techniques; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Rougemaille, N.; Schmid, A. Magnetic Imaging with Spin-Polarized Low-Energy Electron Microscopy. Eur. Phys. J. Appl. Phys. 2010, 50, 20101. [Google Scholar] [CrossRef]
- Bischler, U.; Bertel, E. Simple Source of Atomic Hydrogen for Ultrahigh Vacuum Applications. J. Vac. Sci. Technol. Vac. Surf. Films 1993, 11, 458–460. [Google Scholar] [CrossRef]
- Gas Correction Factors for Ionization Vacuum Gauges. Available online: https://www.mks.com/n/gas-correction-factors-for-ionization-vacuum-gauges (accessed on 1 January 2024).
- Gabaly, F.E.; Puerta, J.M.; Klein, C.; Saa, A.; Schmid, A.K.; McCarty, K.F.; Cerda, J.I.; de la Figuera, J. Structure and Morphology of ultrathinCo/Ru(0001) Films. New J. Phys. 2007, 9, 80. [Google Scholar] [CrossRef]
- Santos, B.; Gallego, S.; Mascaraque, A.; McCarty, K.F.; Quesada, A.; N’Diaye, A.T.; Schmid, A.K.; de la Figuera, J. Hydrogen-Induced Reversible Spin-Reorientation Transition and Magnetic Stripe Domain Phase in Bilayer Co on Ru(0001). Phys. Rev. B 2012, 85, 134409. [Google Scholar] [CrossRef]
- Ruiz-Gómez, S.; Pérez, L.; Mascaraque, A.; Santos, B.; Gabaly, F.E.; Schmid, A.K.; de la Figuera, J. Stacking Influence on the In-Plane Magnetic Anisotropy in a 2D Magnetic System. Nanoscale 2023, 15, 8313–8319. [Google Scholar] [CrossRef]
- Gabaly, F.; McCarty, K.; Schmid, A.; de la Figuera, J.; Muñoz, M.; Szunyogh, L.; Weinberger, P.; Gallego, S. Noble Metal Capping Effects on the Spin-Reorientation Transitions of Co/Ru(0001). New J. Phys. 2008, 10, 073024. [Google Scholar] [CrossRef]
- Gabaly, F.; Gallego, S.; Muñoz, C.; Szunyogh, L.; Weinberger, P.; Klein, C.; Schmid, A.; McCarty, K.; de la Figuera, J. Imaging Spin-Reorientation Transitions in Consecutive Atomic Co Layers on Ru(0001). Phys. Rev. Lett. 2006, 96, 147202. [Google Scholar] [CrossRef] [PubMed]
- Getzlaff, M. Fundamentals of Magnetism; Springer: Berlin, Heidelberg, 2006. [Google Scholar] [CrossRef]
- Gallego, S.; Muñoz, M.; Szunyogh, L.; Weinberger, P. Band-Filling Effects in the Magnetic Anisotropy of Atomic Thin Layers of Co. Philos. Mag. 2008, 88, 2655–2665. [Google Scholar] [CrossRef]
- Krishnan, K.M. Fundamentals and Applications of Magnetic Materials. MRS Bull. 2017, 42, 540. [Google Scholar] [CrossRef]
- Johnson, M.T.; Bloemen, P.J.H.; den Broeder, F.J.A.; de Vries, J.J. Magnetic Anisotropy in Metallic Multilayers. Rep. Prog. Phys. 1996, 59, 1409. [Google Scholar] [CrossRef]
- Camarero, J.; de Miguel, J.J.; Miranda, R.; Raposo, V.; Hernando, A. Influence of Film Morphology on Perpendicular Magnetic Anisotropy. Phys. Rev. B 2001, 64, 125406. [Google Scholar] [CrossRef]
- Ferraro, F. Magnetic Anisotropies and Exchange Bias in Ultrathin Cobalt Layers for the Tunnel Anisotropic Magnetoresistance. Ph.D. Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2015. [Google Scholar]
- Dimitrov, D.A.; Wysin, G.M. Effects of Surface Anisotropy on Hysteresis in Fine Magnetic Particles. Phys. Rev. B 1994, 50, 3077–3084. [Google Scholar] [CrossRef]
- Draaisma, H.J.G.; de Jonge, W.J.M.; den Broeder, F.J.A. Magnetic Interface Anisotropy in Pd/Co and Pd/Fe Multilayers. J. Magn. Magn. Mater. 1987, 66, 351–355. [Google Scholar] [CrossRef]
- Kozłowski, W.; Balcerski, J.; Szmaja, W. Study of Nanocrystalline Thin Cobalt Films with Perpendicular Magnetic Anisotropy Obtained by Thermal Evaporation. J. Magn. Magn. Mater. 2017, 423, 256–261. [Google Scholar] [CrossRef]
- Allenspach, R.; Stampanoni, M.; Bischof, A. Magnetic Domains in Thin Epitaxial Co/Au(111) Films. Phys. Rev. Lett. 1990, 65, 3344–3347. [Google Scholar] [CrossRef]
- Hu, X.; Kawazoe, Y. Surface Anisotropy and Spin-Reorientation Transitions in Ultrathin Magnetic Films. IEEE Trans. Magn. 1996, 32 Pt 2, 4561–4566. [Google Scholar] [CrossRef]
- Purcell, S.T.; van Kesteren, H.W.; Cosman, E.C.; Hoving, W. Structural and Magnetic Studies of Ultrathin Epitaxial Co Films Deposited on a Pd(111) Single Crystal. J. Magn. Magn. Mater. 1991, 93, 25–30. [Google Scholar] [CrossRef]
- Davydenko, A.V.; Kozlov, A.G.; Ognev, A.V.; Stebliy, M.E.; Samardak, A.S.; Ermakov, K.S.; Kolesnikov, A.G.; Chebotkevich, L.A. Origin of Perpendicular Magnetic Anisotropy in Epitaxial Pd/Co/Pd(111) Trilayers. Phys. Rev. B 2017, 95, 064430. [Google Scholar] [CrossRef]
- Victora, R.H.; MacLaren, J.M. Theory of Magnetic Interface Anisotropy. Phys. Rev. B 1993, 47, 11583–11586. [Google Scholar] [CrossRef] [PubMed]
- den Broeder, F.J.A.; Hoving, W.; Bloemen, P.J.H. Magnetic Anisotropy of Multilayers. J. Magn. Magn. Mater. 1991, 93, 562–570. [Google Scholar] [CrossRef]
- Daalderop, G.H.O.; Kelly, P.J.; Schuurmans, M.F.H. First-Principles Calculation of the Magnetic Anisotropy Energy of (Co)n/(X)m Multilayers. Phys. Rev. B 1990, 42, 7270–7273. [Google Scholar] [CrossRef] [PubMed]
- Lederman, D.; Wang, Y.; Morales, E.H.; Matelon, R.J.; Cabrera, G.B.; Volkmann, U.G.; Cabrera, A.L. Magnetooptic Properties of Fe/Pd and Co/Pd Bilayers under Hydrogen Absorption. Appl. Phys. Lett. 2004, 85, 615–617. [Google Scholar] [CrossRef]
- Cerdá, J.; Herranz, T.; Puerta, J.; La, J.; McCarty, K. CO-Assisted Subsurface Hydrogen Trapping in Pd(111) Films. J. Phys. Chem. Lett. 2012, 3, 87–91. [Google Scholar] [CrossRef]
- Jaklevic, R.C.; Davis, L.C. Band Signatures in the Low-Energy-Electron Reflectance Spectra of Fcc Metals. Phys. Rev. B 1982, 26, 5391–5397. [Google Scholar] [CrossRef]
- Christmann, K.; Ertl, G.; Schober, O. LEED Intensities from Clean and Hydrogen Covered Ni(100) and Pd(111) Surfaces. Surf. Sci. 1973, 40, 61–70. [Google Scholar] [CrossRef]
- Behm, R.J.; Christmann, K.; Ertl, G. Adsorption of Hydrogen on Pd(100). Surf. Sci. 1980, 99, 320–340. [Google Scholar] [CrossRef]
- Conrad, H.; Ertl, G.; Koch, J.; Latta, E.E. Adsorption of CO on Pd Single Crystal Surfaces. Surf. Sci. 1974, 43, 462–480. [Google Scholar] [CrossRef]
- Tracy, J.C.; Palmberg, P.W. Simple Technique for Binding Energy Determinations: CO on Pd(100). Surf. Sci. 1969, 14, 274–277. [Google Scholar] [CrossRef]
- Nieuwenhuys, B.E. Correlation between Work Function Change and Degree of Electron Back-Donation in the Adsorption of Carbon Monoxide and Nitrogen on Group VIII Metals. Surf. Sci. 1981, 105, 505–516. [Google Scholar] [CrossRef]
- Matsumura, D.; Yokoyama, T.; Amemiya, K.; Kitagawa, S.; Ohta, T. CO Induced Spin Reorientation Transition of Co/Pd(111) Studied by XMCD and XPS. Phys. Scr. 2005, 2005, 583. [Google Scholar] [CrossRef]
- Hong, J.; Wu, R.Q.; Lindner, J.; Kosubek, E.; Baberschke, K. Manipulation of Spin Reorientation Transition by Oxygen Surfactant Growth: A Combined Theoretical and Experimental Approach. Phys. Rev. Lett. 2004, 92, 147202. [Google Scholar] [CrossRef]
- Baek, I.-G.; Lee, H.G.; Kim, H.-J.; Vescovo, E. Spin Reorientation Transition in Fe(110) Thin Films: The Role of Surface Anisotropy. Phys. Rev. B 2003, 67, 075401. [Google Scholar] [CrossRef]
- Sim, H. Influence of Hydrogen on the Magnetic Properties of Ultrathin Cobalt Films in Contact with Electrolyte. Ph.D. Thesis, Institut Polytechnique de Paris, Palaiseau, France, 2022. Available online: https://theses.hal.science/tel-03725196 (accessed on 1 June 2024).
- van Dijken, S.; Vollmer, R.; Poelsema, B.; Kirschner, J. The Influence of CO and H2 Adsorption on the Spin Reorientation Transition in Ni/Cu(001). J. Magn. Magn. Mater. 2000, 210, 316–328. [Google Scholar] [CrossRef]
- Klyukin, K.; Beach, G.; Yildiz, B. Hydrogen Tunes Magnetic Anisotropy by Affecting Local Hybridization at the Interface of a Ferromagnet with Nonmagnetic Metals. Phys. Rev. Mater. 2020, 4, 104416. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Lin, W.-C.; Yeh, Y.-C.; Song, K.-J. Hydrogen Adsorption Promoted Perpendicular Magnetic Anisotropy in Nano-Structured Fe Coverage on Pd/W{112} Faceting Surface. Appl. Phys. Lett. 2013, 102, 242403. [Google Scholar] [CrossRef]
- Máca, F.; Shick, A.B.; Redinger, J.; Podloucky, R.; Weinberger, P. The Influence of Hydrogen Adsorption on Magnetic Properties of Ni/Cu(001) Surface. Czechoslov. J. Phys. 2003, 53, 33–39. [Google Scholar] [CrossRef]
- Jensen, P.J.; Bennemann, K.H. Magnetic Structure of Films: Dependence on Anisotropy and Atomic Morphology. Surf. Sci. Rep. 2006, 61, 129–199. [Google Scholar] [CrossRef]
- Ceyer, S.T. The Unique Chemistry of Hydrogen beneath the Surface: Catalytic Hydrogenation of Hydrocarbons. Acc. Chem. Res. 2001, 34, 737–744. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Burgos, B.; López-Martín, R.; De Toro, J.A.; Binns, C.; Schmid, A.K.; de la Figuera, J. Tailoring the Spin Reorientation Transition of Co Films by Pd Monolayer Capping. Nanomaterials 2024, 14, 1662. https://doi.org/10.3390/nano14201662
Santos Burgos B, López-Martín R, De Toro JA, Binns C, Schmid AK, de la Figuera J. Tailoring the Spin Reorientation Transition of Co Films by Pd Monolayer Capping. Nanomaterials. 2024; 14(20):1662. https://doi.org/10.3390/nano14201662
Chicago/Turabian StyleSantos Burgos, Benito, Raúl López-Martín, José A. De Toro, Chris Binns, Andreas K. Schmid, and Juan de la Figuera. 2024. "Tailoring the Spin Reorientation Transition of Co Films by Pd Monolayer Capping" Nanomaterials 14, no. 20: 1662. https://doi.org/10.3390/nano14201662
APA StyleSantos Burgos, B., López-Martín, R., De Toro, J. A., Binns, C., Schmid, A. K., & de la Figuera, J. (2024). Tailoring the Spin Reorientation Transition of Co Films by Pd Monolayer Capping. Nanomaterials, 14(20), 1662. https://doi.org/10.3390/nano14201662