Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Composite LB Film Preparation
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makiura, R. Creation of metal–organic framework nanosheets by the Langmuir–Blodgett technique. Coord. Chem. Rev. 2022, 469, 214650. [Google Scholar] [CrossRef]
- Swierczewski, M.; Bürgi, T. Langmuir and Langmuir–Blodgett Films of Gold and Silver Nanoparticles. Langmuir 2023, 39, 2135–2151. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Wang, R.; Li, M.; Li, X.T.; Ge, B.C.; Bai, Z.H.; Jiao, T.F. Facile preparation of self-assembled black phosphorus-based composite LB films as new chemical gas sensors. Colloids Surf. Physicochem. Eng. Asp. 2021, 608, 125616. [Google Scholar] [CrossRef]
- Oliveira, O.N.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef]
- Caplan, M.R.; Moore, P.N.; Zhang, S.; Kamm, R.D.; Lauffenburger, D.A. Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction. Biomacromolecules 2000, 1, 627–631. [Google Scholar] [CrossRef]
- Li, S.H.; Mu, J.; Wang, W.J.; Ma, S.H.; Sun, J.L.; Chu, J.H.; Wang, W.C. Polarization of hemicyanine Langmuir-Blodgett films. Chin. Phys. Lett. 2004, 21, 952–954. [Google Scholar]
- Ozbek, Z.; Erdogan, M.; Capan, R. Swelling behavior of pyrene-labelled polystyrene LB thin film exposed to various volatile organic vapors. Sens. Actuators B-Chem. 2014, 196, 328–335. [Google Scholar] [CrossRef]
- Ozmen, M.; Ozbek, Z.; Bayrakci, M.; Ertul, S.; Ersoz, M.; Capan, R. Preparation of Langmuir–Blodgett thin films of calix [6]arenes and p-tert butyl group effect on their gas sensing properties. Appl. Surf. Sci. 2015, 359, 364–371. [Google Scholar]
- Liu, X.J.; He, Y.; Zhang, G.C.; Wang, R.; Zhou, J.X.; Zhang, L.X.; Gu, J.M.; Jiao, T.F. Preparation and High Photocurrent Generation Enhancement of Self-Assembled Layered Double Hydroxide-Based Composite Dye Films. Langmuir 2020, 36, 7483–7493. [Google Scholar] [CrossRef]
- Obraztsov, I.; Noworyta, K.; Hart, A.; Gobeze, H.B.; Kc, C.B.; Kutner, W.; D’Souza, F. Langmuir–Blodgett Films of Self-Assembled (Alkylether-Derivatized Zn Phthalocyanine)–(C60 Imidazole Adduct) Dyad with Controlled Intermolecular Distance for Photoelectrochemical Studies. ACS Appl. Mater. Interfaces 2014, 6, 8688–8701. [Google Scholar] [CrossRef]
- Yamada, S.; Tasaki, T.; Akiyama, T.; Terasaki, N.; Nitahara, S. Gold nanoparticle-porphyrin self-assembled multistructures for photoelectrochemical conversion. Thin Solid Film. 2003, 438, 70–74. [Google Scholar] [CrossRef]
- Stepashkin, N.A.; Chernenko, M.K.; Khripun, V.D.; Ivanov, N.S.; Sukhodolov, N.G. Electrochemical properties of Langmuir-Blodgett films containing cobalt hexacyanoferrate nanoparticles. Thin Solid Film. 2018, 661, 1–6. [Google Scholar] [CrossRef]
- Dähne, L.; Biller, E. Color Variation in Highly Oriented Dye Layers by Polymorphism of Dye Aggregates. Adv. Mater. 1998, 10, 241–245. [Google Scholar] [CrossRef]
- Liu, Y.M.; Ma, K.; Jiao, T.F.; Xing, R.R.; Shen, G.Z.; Yan, X.H. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy. Sci. Rep. 2017, 7, 42978. [Google Scholar] [CrossRef] [PubMed]
- Alhalili, Z.; Abdelrahman, E.A. Facile Synthesis and Characterization of Manganese Ferrite Nanoparticles for the Successful Removal of Safranine T Dye from Aqueous Solutions. Inorganics 2024, 12, 30. [Google Scholar] [CrossRef]
- Mondal, S.; Doloi, B.; Ghosh, S. Spectroscopic studies of interaction of safranine T with ionic surfactants. Fluid Phase Equilibria 2013, 360, 180–187. [Google Scholar] [CrossRef]
- Bar, N.; Chowdhury, P. A Brief Review on Advances in Rhodamine B Based Chromic Materials and Their Prospects. ACS Appl. Electron. Mater. 2022, 4, 3749–3771. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Yao, H.; Kobayashi, S.; Kimura, K. Self-assembly of acridine orange dye at a mica/solution interface: Formation of nanostripe supramolecular architectures. J. Colloid Interface Sci. 2007, 307, 272–279. [Google Scholar] [CrossRef]
- Kato, N.; Ikeda, S.; Hirakawa, M.; Ito, H. Relationship between degree of polymerization and optical and thermal properties of fluorene in polycarbonate polymers. J. Appl. Polym. Sci. 2017, 134, 45042. [Google Scholar] [CrossRef]
- Peet, J.; Kim, J.Y.; Coates, N.E.; Ma, W.; Moses, L.D.; Heeger, A.J.; Bazan, G.C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.C.; Zhang, Y.; Imbault, A.L.; Li, Y.H. Metal-organic framework derived iron-nickel sulfide nanorods for oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 20941–20949. [Google Scholar] [CrossRef]
- Shi, G.C.; Wang, M.L.; Zhu, Y.Y.; Wang, Y.H.; Ma, W.L. Synthesis of flexible and stable SERS substrate based on Au nanofilms/cicada wing array for rapid detection of pesticide residues. Opt. Commun. 2018, 425, 49–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Ge, L.; Li, L.; Zhao, T.; Jiao, T. Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties. Nanomaterials 2024, 14, 1514. https://doi.org/10.3390/nano14181514
Wang F, Ge L, Li L, Zhao T, Jiao T. Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties. Nanomaterials. 2024; 14(18):1514. https://doi.org/10.3390/nano14181514
Chicago/Turabian StyleWang, Feifei, Lei Ge, Lin Li, Tianyue Zhao, and Tifeng Jiao. 2024. "Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties" Nanomaterials 14, no. 18: 1514. https://doi.org/10.3390/nano14181514
APA StyleWang, F., Ge, L., Li, L., Zhao, T., & Jiao, T. (2024). Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties. Nanomaterials, 14(18), 1514. https://doi.org/10.3390/nano14181514