Synthesis, Structural Characterization, and Infrared Analysis of Double Perovskites Pr2NiMnO6, Gd2NiMnO6, and Er2NiMnO6 Functional Nano-Ceramics
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology
3.2. XRD Analysis
3.3. FTIR Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Chen, X.X.G.; Zhou, Y.; Lin, H.-J.; Chen, C.-T.; Ran, R.; Zhou, W.; Shao, Z. Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. ChemSusChem 2019, 12, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, Y.; Shao, Z. Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends Chem. 2019, 1, 410–424. [Google Scholar] [CrossRef]
- Oleś, M.; Horsch, P.; Feiner, L.F.; Khaliullin, G. Spin-Orbital Entanglement and Violation of the Goodenough-Kanamori Rules. Phys. Rev. Lett. 2006, 96, 147205. [Google Scholar] [CrossRef] [PubMed]
- Abass, S.; Bagri, A.; Sultan, K. Modifications induced in structural, electronic, and dielectric properties of Nd2NiMnO6 double perovskite by Sr doping. J. Alloys Compd. 2023, 930, 167463. [Google Scholar] [CrossRef]
- Booth, R.J.; Fillman, R.; Whitaker, H.; Nag, A.; Tiwari, R.M.; Ramanujachary, K.V.; Gopalakrishnan, J.; Lofland, S.E. An investigation of structural, magnetic, and dielectric properties of R2NiMnO6 (R = rare earth, Y). Mater. Res. Bull. 2009, 44, 1559–1564. [Google Scholar] [CrossRef]
- Jia, Y.; Cheng, Y.; Wang, H.; Zhang, Z.; Li, L. Magnetocaloric properties and critical behavior in double perovskite RE2CrMnO6 (RE = La, Pr, and Nd) compounds. Ceram. Int. 2020, 46, 25043–25049. [Google Scholar] [CrossRef]
- Shinde, K.P.; Lee, E.J.; Manawan, M.; Lee, A.; Park, S.Y.; Jo, Y.; Ku, K.; Kim, J.M.; Park, J.S. Structural; magnetic, and magnetocaloric properties of R2NiMnO6 (R = Eu, Gd, Tb). Sci. Rep. 2021, 11, 20206. [Google Scholar] [CrossRef]
- Kumar, N.; Kaushik, S.D.; Rao, K.S.; Babu, P.D.; Deshpande, S.K.; Achary, S.N.; Errandonea, D. Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study. Crystals 2023, 13, 503. [Google Scholar] [CrossRef]
- Bessimou, M.; Masrour, R. Study of Optical, Magnetic, and Magnetocaloric Properties of Double Perovskites Dy2NiMnO6: First Principles Approach and Monte Carlo Simulations. J. Inorg. Organomet. Polym. Mater. 2024, 1–8. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759. [Google Scholar] [CrossRef]
- Singh, M.P.; Truong, K.D.; Jandl, S.; Fournier, P. Magnetic properties and phonon behavior of Pr2NiMnO6 thin films. Appl. Phys. Lett. 2011, 98, 162506. [Google Scholar] [CrossRef]
- Hashisaka, M.; Kan, D.; Masuno, A.; Takano, M.; Shimakawa, Y.; Terashima, T.; Mibu, K. Epitaxial growth of ferromagnetic La2NiMnO6 with ordered double-perovskite structure. Appl. Phys. Lett. 2006, 89, 032504. [Google Scholar] [CrossRef]
- Rogado, N.S.; Li, J.; Sleight, A.W.; Subramanian, M.A. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 2005, 17, 2225–2227. [Google Scholar] [CrossRef]
- Li, H.; Sun, L.P.; Feng, Q.; Huo, L.H.; Zhao, H.; Bassat, J.M.; Rougier, A.; Fourcade, S.; Grenier, J.C. Investigation of Pr2NiMnO6-Ce0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells. J. Solid State Electrochem. 2017, 21, 273–280. [Google Scholar] [CrossRef]
- Guan, D.; Zhou, J.; Huang, Y.C.; Dong, C.-L.; Wang, J.-Q.; Zhou, W.; Shao, Z. Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nat. Commun. 2019, 10, 3755. [Google Scholar] [CrossRef] [PubMed]
- Maneesha, P.; Baral, S.C.; Rini, E.G.; Sen, S. An overview of the recent developments in the structural correlation of magnetic and electrical properties of Pr2NiMnO6 double perovskite. Prog. Solid. State Chem. 2023, 70, 100402. [Google Scholar] [CrossRef]
- Retuerto, M.; Muñoz, A.; Martínez-Lope, M.J.; Alonso, J.A.; Mompeán, F.J.; Fernández-Díaz, M.T.; Sánchez-Benítez, J. Magnetic Interactions in the Double Perovskites R2NiMnO6 (R = Tb, Ho, Er, Tm) Investigated by Neutron Diffraction. Inorg. Chem. 2015, 54, 10890–10900. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.S. Nanomaterials under high-pressure. Chem. Soc. Rev. 2006, 35, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Anirban, S.; Dutta, A. Understanding the structure and charge transport mechanism of Sm2NiMnO6 double perovskite prepared via low temperature auto-ignition method. Phys. Lett. A 2021, 397, 127256. [Google Scholar] [CrossRef]
- Yi, W.; Liang, Q.; Matsushita, Y.; Tanaka, M.; Belik, A.A. High-Pressure Synthesis, Crystal Structure, and Properties of In2NiMnO6 with Antiferromagnetic Order and Field-Induced Phase Transition. Inorg. Chem. 2013, 52, 14108–14115. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Saiki, A.; Ishizawa, N.; Mizutani, N.; Kato, M. Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature. J. Ceram. Soc. Jpn. 1985, 93, 649–654. [Google Scholar] [CrossRef]
- Rudenko, V.S.; Boganov, A.G. Stoichiometry and phase transitions in rare earth oxides. Inorg. Mater. 1970, 6, 1893–1898. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Kaduk, J.A. A Rietveld tutorial-Mullite. Powder Diffr. 2009, 24, 351–361. [Google Scholar] [CrossRef]
- Scardi, P. Diffraction Line Profiles in the Rietveld Method. Cryst. Growth Des. 2020, 20, 6903–6916. [Google Scholar] [CrossRef]
- Mohapatra, S.R.; Sahu, B.; Raut, S.; Kaushik, S.D.; Singh, A.K. Investigation on structural, optical and magnetic properties of double perovskite Gd2NiMnO6. AIP Conf. Proc. 2015, 1665, 140032. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Errandonea, D.; Garg, A.B. Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Prog. Mater. Sci. 2018, 97, 123–169. [Google Scholar] [CrossRef]
- Errandonea, D.; Manjon, F.J. Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Prog. Mater. Sci. 2008, 53, 711. [Google Scholar] [CrossRef]
- Ridley, C.J.; Daisenberger, D.; Wilson, C.W.; Stenning, G.B.G.; Sankar, G.; Knight, K.S.; Tucker, M.G.; Smith, R.I.; Bull, C.L. High-Pressure Study of the Elpasolite Perovskite La2NiMnO6. Inorg. Chem. 2019, 58, 9016–9027. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D.; Santamaria-Perez, D.; Martinez-Garcia, D.; Gomis, O.; Shukla, R.; Achary, S.N.; Tyagi, A.K.; Popescu, C. Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3. Inorg. Chem. 2017, 56, 8363–8371. [Google Scholar] [CrossRef]
- Garg, A.B.; Muñoz, A.; Anzellini, S.; Sánchez-Martín, J.; Turnbull, R.; Díaz-Anichtchenko, D.; Popescu, C.; Errandonea, D. Role of GdO addition in the structural stability of cubic Gd2O3 at high pressures: Determination of the equation of states of GdO and Gd2O3. Materialia 2024, 34, 102064. [Google Scholar]
- Elhamel, M.; Hebboul, Z.; Naidjate, M.E.; Draoui, A.; Benghia, A.; Fadla, M.A.; Kanoun, M.B.; Goumri-Said, S. Experimental synthesis of double perovskite functional nano-ceramic Eu2NiMnO6: Combining optical characterization and DFT calculations. J. Solid State Chem. 2023, 323, 124022. [Google Scholar] [CrossRef]
- Ahmad, J.; Siddique, M.; Khan, J.A.; Bukhari, S.H.; Sultan, T. Impact of rare earth substitution on structural and optical properties of multiferroic La2−xGdxNiMnO6. Mater. Res. Express 2019, 6, 126311. [Google Scholar] [CrossRef]
- Mukherjee, R.; Sheikh, M.S.; Sinha, T.P. Sintering Temperature Dependent Optical and Vibrational Properties of Sm2NiMnO6 Nanoparticle. J. Nano-Electron. Phys. 2019, 11, 06010. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Lampronti, G.I.; Haines, C.R.S.; Carpenter, M.A. Magnetoelastic coupling behavior at the ferromagnetic transition in the partially disordered double perovskite La2NiMnO6. Phys. Rev. B 2019, 100, 014304. [Google Scholar] [CrossRef]
- Truong, K.D.; Singh, M.P.; Jandl, S.; Fournier, P. Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy. J. Phys. Condens. Matter 2011, 23, 052202. [Google Scholar] [CrossRef]
- Iliev, M.N.; Guo, H.; Gupta, A. Raman spectroscopy evidence of strong spin-phonon coupling in epitaxial thin films of the double perovskite La2NiMnO6. Appl. Phys. Lett. 2007, 90, 151914. [Google Scholar] [CrossRef]
- Ruiz-Fuertes, J.; Errandonea, D.; López-Moreno, S.; González, J.; Gomis, O.; Vilaplana, R.; Manjón, F.J.; Muñoz, A.; Rodríguez-Hernández, P.; Friedrich, A.; et al. High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Phys. Rev. B 2011, 83, 214112. [Google Scholar] [CrossRef]
- Nasir, M.; Kumar, S.; Patra, N.; Bhattacharya, D.; Jha, S.N.; Basaula, D.R.; Bhatt, S.; Khan, M.; Liu, S.W.; Biring, S.; et al. Role of Antisite Disorder, Rare-Earth Size, and Superexchange Angle on Band Gap, Curie Temperature, and Magnetization of R2NiMnO6 Double Perovskites. ACS Appl. Electron. Mater. 2019, 1, 141–153. [Google Scholar] [CrossRef]
- Bucknum, M.J. Chemical Physics of Phonons and Superconductivity: A Heuristic Approach. Nat. Preced. 2008, 1586, 2. [Google Scholar] [CrossRef]
- Errandonea, D.; Boehler, R.; Ross, M. Melting of the Rare Earth Metals and f-Electron Delocalization. Phys. Rev. Lett. 2000, 85, 3444. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Rodriguez-Hernandez, P.; Muñoz, A.; Manjón, F.J.; Nenert, G.; Errandonea, D. High-Pressure Raman Study of Fe(IO3)3: Soft-Mode Behavior Driven by Coordination Changes of Iodine Atoms. J. Phys. Chem. C 2020, 124, 21329–21337. [Google Scholar] [CrossRef]
Ni(NO3)2·6H2O | MnCl2·4H2O | Product | Particle Size (nm) | ||
---|---|---|---|---|---|
L | S | ||||
Pr(NO3)3·6H2O 0.435 g | 0.182 g | 0.197 g | Pr2NiMnO6 98% Pr2O3 2% | 37(4) | 45(4) |
Er2O3 0.382 g | Er2NiMnO6 94% Er2O3 6% | 40(4) | 49(5) | ||
Gd(NO3)3·6H2O 0.451 g | Gd2NiMnO6 98% Gd2O3 4% | 29(3) | 36(3) |
Pr2NiMnO6 | Gd2NiMnO6 | Er2NiMnO6 | |
---|---|---|---|
a (Å) | 5.4432(5) | 5.2978(5) | 5.2302(5) |
b (Å) | 5.5095(5) | 5.6119(5) | 5.6392(5) |
c (Å) | 7.7101(7) | 7.5406(7) | 7.4533(5) |
β (°) | 90.17(3) | 90.21(3) | 90.21(3) |
V (Å3) | 231.2(1) Å3 | 224.2(1) Å3 | 219.8(1) Å3 |
K (GPa) | 173(5) | 176(5) | 179(5) |
Pr2NiMnO6 | ||||
site | x | y | z | |
Pr | 4e | 0.9824(5) | 0.0705(5) | 0.2504(5) |
Ni | 2d | 0.5 | 0 | 0 |
Mn | 2c | 0.5 | 0 | 0.5 |
O1 | 4e | 0.1074(12) | 0.4627(12) | 0.2423(12) |
O2 | 4e | 0.7009(12) | 0.3123(12) | 0.0505(12) |
O3 | 4e | 0.1783(12) | 0.2057(12) | 0.9446(12) |
Gd2NiMnO6 | ||||
site | x | y | z | |
Gd | site | 0.9832(5) | 0.0713(5) | 0.2501(5) |
Ni | 4e | 0.5 | 0 | 0 |
Mn | 2d | 0.5 | 0 | 0.5 |
O1 | 2c | 0.1082(12) | 0.4621(12) | 0.2435(12) |
O2 | 4e | 0.7016(12) | 0.3118(12) | 0.0515(12) |
O3 | 4e | 0.1771(12) | 0.2059(12) | 0.9441(12) |
Er2NiMnO6 | ||||
site | x | y | z | |
Er | site | 0.9821(5) | 0.0701(5) | 0.2512(5) |
Ni | 4e | 0.5 | 0 | 0 |
Mn | 2d | 0.5 | 0 | 0.5 |
O1 | 2c | 0.1077(12) | 0.4330(12) | 0.2428(12) |
O2 | 4e | 0.7013(12) | 0.3133(12) | 0.0499(12) |
O3 | 4e | 0.1788(12) | 0.2051(12) | 0.9448(12) |
Lanthanide | Pr | Gd | Er |
---|---|---|---|
NiO6 octahedron | |||
Ni-O1 (x2) | 2.083(10) Å | 2.031(9) Å | 2.030(9) Å |
Ni-O2 (x2) | 2.075(7) Å | 2.086(7) Å | 2.091(7) Å |
Ni-O3 (x2) | 2.128(7) Å | 2.106(7) Å | 2.079(7) Å |
MnO6 octahedron | |||
Mn-O1 (x2) | 1.967(10) Å | 1.933(9) Å | 1.936(9) Å |
Mn-O2 (x2) | 1.969(7) Å | 1.942(7) Å | 1.924(7) Å |
Mn-O3 (x2) | 1.938(7) Å | 1.945(7) Å | 1.952(7) Å |
Ni-O-Mn angles | |||
Ni-O1-Mn | 144.3(3) | 144.5(3) | 144.6(3) |
Ni-O2-Mn | 146.5(3) | 146.4(3) | 146.6(3) |
Ni-O3-Mn | 144.3(3) | 144.2(3) | 144.1(3) |
RO8 polyhedron | |||
R-O1 | 2.266(8) Å | 2.251(7) Å | 2.150(8) Å |
R-O1 | 2.311(8) Å | 2.292(8) Å | 2.281(7) Å |
R-O2 | 2.320(6) Å | 2.308(6) Å | 2.283(6) Å |
R-O2 | 2.546(7) Å | 2.504(7) Å | 2.493(7) Å |
R-O2 | 2.677(5) Å | 2.630(5) Å | 2.603(5) Å |
R-O3 | 2.309(6) Å | 2.297(7) Å | 2.284(7) Å |
R-O3 | 2.553(7) Å | 2.520(7) Å | 2.499(7) Å |
R-O3 | 2.696(5) Å | 2.640(5) Å | 2.614(5) Å |
Compound | Z | Ionic Radii (Å) | ν1 (cm−1) | ν2 (cm−1) |
---|---|---|---|---|
La2NiMnO6 | 57 | 1.160 | 600 | 430 |
Pr2NiMnO6 | 59 | 1.126 | 590 | 440 |
Sm2NiMnO6 | 62 | 1.079 | 575 | |
Eu2NiMnO6 | 63 | 1.066 | 602 | |
Gd2NiMnO6 | 64 | 1.053 | 595 | 460 |
Er2NiMnO6 | 68 | 1.004 | 602 | 470 |
Element | Shannon Ionic Radii. Coord. 8 * | Frequency (cm−1) |
---|---|---|
La | 1.160 | 431(19) |
Ce | 1.143 | 435(19) |
Pr | 1.126 | 439(19) |
Nd | 1.109 | 444(19) |
Pm | 1.093 | 448(19) |
Sm | 1.079 | 452(19) |
Eu | 1.066 | 455(18) |
Gd | 1.053 | 458(18) |
Tb | 1.040 | 462(18) |
Dy | 1.027 | 465(18) |
Ho | 1.015 | 468(18) |
Er | 1.004 | 471(18) |
Tm | 0.994 | 474(18) |
Yb | 0.985 | 476(18) |
Lu | 0.977 | 478(18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhamel, M.; Hebboul, Z.; Benbertal, D.; Botella, P.; Errandonea, D. Synthesis, Structural Characterization, and Infrared Analysis of Double Perovskites Pr2NiMnO6, Gd2NiMnO6, and Er2NiMnO6 Functional Nano-Ceramics. Nanomaterials 2024, 14, 960. https://doi.org/10.3390/nano14110960
Elhamel M, Hebboul Z, Benbertal D, Botella P, Errandonea D. Synthesis, Structural Characterization, and Infrared Analysis of Double Perovskites Pr2NiMnO6, Gd2NiMnO6, and Er2NiMnO6 Functional Nano-Ceramics. Nanomaterials. 2024; 14(11):960. https://doi.org/10.3390/nano14110960
Chicago/Turabian StyleElhamel, Mebark, Zoulikha Hebboul, Djamal Benbertal, Pablo Botella, and Daniel Errandonea. 2024. "Synthesis, Structural Characterization, and Infrared Analysis of Double Perovskites Pr2NiMnO6, Gd2NiMnO6, and Er2NiMnO6 Functional Nano-Ceramics" Nanomaterials 14, no. 11: 960. https://doi.org/10.3390/nano14110960
APA StyleElhamel, M., Hebboul, Z., Benbertal, D., Botella, P., & Errandonea, D. (2024). Synthesis, Structural Characterization, and Infrared Analysis of Double Perovskites Pr2NiMnO6, Gd2NiMnO6, and Er2NiMnO6 Functional Nano-Ceramics. Nanomaterials, 14(11), 960. https://doi.org/10.3390/nano14110960