Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Catalysts
2.3. Physical Property Characterization
2.4. Electrochemical and Physical Characterization
3. Results
3.1. Physical Characterization of PdxCuy/XC-72
3.2. Electrochemical Tests for MOR (Three-Electrode Cell)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, X.; Wan, C.; Huang, Y.; Duan, X. Noble Metal Based Electrocatalysts for Alcohol Oxidation Reactions in Alkaline Media. Adv. Funct. Mater. 2022, 32, 2106401. [Google Scholar] [CrossRef]
- Bianchini, C.; Shen, P.K. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev. 2009, 109, 4183–4206. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhang, X.; Sun, H.; Wang, S.; Sun, G. Recent Advances in Multi-Scale Design and Construction of Materials for Direct Methanol Fuel Cells. Nano Energy 2019, 65, 104048. [Google Scholar] [CrossRef]
- Tong, Y.Y.; Gu, C.D.; Zhang, J.L.; Huang, M.L.; Tang, H.; Wang, X.L.; Tu, J.P. Three-Dimensional Astrocyte-Network Ni–P–O Compound with Superior Electrocatalytic Activity and Stability for Methanol Oxidation in Alkaline Environments. J. Mater. Chem. A 2015, 3, 4669–4678. [Google Scholar] [CrossRef]
- de Sá, M.H.; Pinto, A.M.F.R.; Oliveira, V.B. Passive Direct Methanol Fuel Cells as a Sustainable Alternative to Batteries in Hearing Aid Devices—An Overview. Int. J. Hydrogen Energy 2022, 47, 16552–16567. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Author Correction: Lattice-Confined Ru Clusters with High CO Tolerance and Activity for the Hydrogen Oxidation Reaction. Nat. Catal. 2021, 4, 341. [Google Scholar] [CrossRef]
- Wan, X.; Liu, X.; Li, Y.; Yu, R.; Zheng, L.; Yan, W.; Wang, H.; Xu, M.; Shui, J. Fe–N–C Electrocatalyst with Dense Active Sites and Efficient Mass Transport for High-Performance Proton Exchange Membrane Fuel Cells. Nat. Catal. 2019, 2, 259–268. [Google Scholar] [CrossRef]
- Anson, C.W.; Stahl, S.S. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels. Chem. Rev. 2020, 120, 3749–3786. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; et al. PdMo Bimetallene for Oxygen Reduction Catalysis. Nature 2019, 574, 81–85. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, L.; Yu, R.; Lu, R.; Li, J.; He, R.; Wu, Y.; Zhang, W.; Hong, X.; Chen, W.; et al. Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538. [Google Scholar] [CrossRef]
- Zuo, Y.; Sheng, W.; Tao, W.; Li, Z. Direct Methanol Fuel Cells System–A Review of Dual-Role Electrocatalysts for Oxygen Reduction and Methanol Oxidation. J. Mater. Sci. Technol. 2022, 114, 29–41. [Google Scholar] [CrossRef]
- Ali, A.; Shen, P.K. Recent Advances in Graphene-Based Platinum and Palladium Electrocatalysts for the Methanol Oxidation Reaction. J. Mater. Chem. A 2019, 7, 22189–22217. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Liao, S.; Zeng, J. Pt∧Ru/C Catalysts Synthesized by a Two-Stage Polyol Reduction Process for Methanol Oxidation Reaction. J. Power Sources 2011, 196, 10570–10575. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S.; Jang, J.-H.; Park, H.-U.; Matin, M.A.; Kim, Y.-T.; Kwon, Y.-U. Effects of Particle Proximity and Composition of Pt–M (M = Mn, Fe, Co) Nanoparticles on Electrocatalysis in Methanol Oxidation Reaction. J. Power Sources 2015, 294, 75–81. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, G.; Wang, D.; Wang, S.; Zhao, X. Low-Temperature N-Anchored Ordered Pt3Co Intermetallic Nanoparticles as Electrocatalysts for Methanol Oxidation Reaction. Nanoscale 2022, 14, 14199–14211. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.; Qin, C.; Zhao, R.; Sun, H.; Sun, H.; Dai, X.; Ye, J.-Y.; Sun, S.-G.; Lu, Y.; Zhang, X. Phosphorus-Doping-Tuned PtNi Concave Nanocubes with High-Index Facets for Enhanced Methanol Oxidation Reaction. Nano Res. 2022, 15, 6961–6968. [Google Scholar] [CrossRef]
- Chen, G.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.; Yuan, Q. Hollow PtCu Octahedral Nanoalloys: Efficient Bifunctional Electrocatalysts towards Oxygen Reduction Reaction and Methanol Oxidation Reaction by Regulating near-Surface Composition. J. Colloid Interface Sci. 2020, 562, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lei, Z.; Zeng, T.; Wang, L.; Cheng, N.; Tan, Y.; Mu, S. Structurally Ordered PtSn Intermetallic Nanoparticles Supported on ATO for Efficient Methanol Oxidation Reaction. Nanoscale 2019, 11, 19895–19902. [Google Scholar] [CrossRef]
- Qiao, M.; Wu, H.; Meng, F.; Zhuang, Z.; Wang, J. Defect-Rich, Highly Porous PtAg Nanoflowers with Superior Anti-Poisoning Ability for Efficient Methanol Oxidation Reaction. Small 2022, 18, 2106643. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xia, T.; Wang, S.; Yang, G.; Dong, B.; Wang, C.; Ma, Q.; Sun, Y.; Wang, R. Oriented-Assembly of Hollow FePt Nanochains with Tunable Catalytic and Magnetic Properties. Nanoscale 2016, 8, 11432–11440. [Google Scholar] [CrossRef]
- Fan, H.; Cheng, M.; Wang, Z.; Wang, R. Layer-Controlled Pt-Ni Porous Nanobowls with Enhanced Electrocatalytic Performance. Nano Res. 2017, 10, 187–198. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, J.; Fang, J. Nanoscale Design of Pd-Based Electrocatalysts for Oxygen Reduction Reaction Enhancement in Alkaline Media. Small Struct. 2022, 3, 2100188. [Google Scholar] [CrossRef]
- Shih, Z.-Y.; Wang, C.-W.; Xu, G.; Chang, H.-T. Porous Palladium Copper Nanoparticles for the Electrocatalytic Oxidation of Methanol in Direct Methanol Fuel Cells. J. Mater. Chem. A 2013, 1, 4773. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Q. In Situ Electrochemical Redox Tuning of Pd-Co Hybrid Electrocatalysts for High-Performance Methanol Oxidation: Strong Metal-Support Interaction. J. Colloid Interface Sci. 2021, 588, 476–484. [Google Scholar] [CrossRef]
- Lao, X.; Sun, T.; Zhang, X.; Pang, M.; Fu, A.; Guo, P. Controllable Lattice Expansion of Monodisperse Face-Centered Cubic Pd–Ag Nanoparticles for C1 and C2 Alcohol Oxidation: The Role of Core–Sheath Lattice Mismatch. ACS Sustain. Chem. Eng. 2022, 10, 6843–6852. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, S.; Sun, X.; Sun, S. Synthesis of Ultrathin FePtPd Nanowires and Their Use as Catalysts for Methanol Oxidation Reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357. [Google Scholar] [CrossRef]
- Chen, S.; Liu, N.; Zhong, J.; Yang, R.; Yan, B.; Gan, L.; Yu, P.; Gui, X.; Yang, H.; Yu, D.; et al. Engineering Support and Distribution of Palladium and Tin on MXene with the Modulation D-Band Center for CO-resilient Methanol Oxidation. Angew. Chem. Int. Ed. 2022, 61, e202209693. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Bai, Y.; Jiang, Z.; Fang, T. Design the PdCu/TaN C Electrocatalyst with Core-Shell Structure Having High Efficiency for Methanol and Formic Acid Oxidation Reactions. Electrochim. Acta 2021, 383, 138365. [Google Scholar] [CrossRef]
- Saleem, F.; Zhang, Z.; Cui, X.; Gong, Y.; Chen, B.; Lai, Z.; Yun, Q.; Gu, L.; Zhang, H. Elemental Segregation in Multimetallic Core–Shell Nanoplates. J. Am. Chem. Soc. 2019, 141, 14496–14500. [Google Scholar] [CrossRef]
- Hu, S.; Munoz, F.; Noborikawa, J.; Haan, J.; Scudiero, L.; Ha, S. Carbon Supported Pd-Based Bimetallic and Trimetallic Catalyst for Formic Acid Electrochemical Oxidation. Appl. Catal. B Environ. 2016, 180, 758–765. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, B.; Dong, S.; Wang, C.; Feng, A.; Fan, X.; Li, Y. Reduced Graphene Oxide Supported Pd-Cu-Co Trimetallic Catalyst: Synthesis, Characterization and Methanol Electrooxidation Properties. J. Energy Chem. 2019, 29, 72–78. [Google Scholar] [CrossRef]
- Tan, Q.; Shu, C.; Abbott, J.; Zhao, Q.; Liu, L.; Qu, T.; Chen, Y.; Zhu, H.; Liu, Y.; Wu, G. Highly Dispersed Pd-CeO 2 Nanoparticles Supported on N-Doped Core–Shell Structured Mesoporous Carbon for Methanol Oxidation in Alkaline Media. ACS Catal. 2019, 9, 6362–6371. [Google Scholar] [CrossRef]
- Jin, L.; Xu, H.; Chen, C.; Shang, H.; Wang, Y.; Wang, C.; Du, Y. Three-Dimensional PdCuM (M = Ru, Rh, Ir) Trimetallic Alloy Nanosheets for Enhancing Methanol Oxidation Electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 42123–42130. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, F.; Huang, H.; Yin, S.; Chen, P.; Jin, P.; Chen, Y. Porous Pd-PdO Nanotubes for Methanol Electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534. [Google Scholar] [CrossRef]
- Luo, X.; Liu, C.; Wang, X.; Shao, Q.; Pi, Y.; Zhu, T.; Li, Y.; Huang, X. Spin Regulation on 2D Pd–Fe–Pt Nanomeshes Promotes Fuel Electrooxidations. Nano Lett. 2020, 20, 1967–1973. [Google Scholar] [CrossRef]
- Xue, J.; Hu, Z.; Li, H.; Zhang, Y.; Liu, C.; Li, M.; Yang, Q.; Hu, S. Pd-Sn Alloy Nanoparticles for Electrocatalytic Methanol Oxidation: Phase Evolution from Solid Solution to Intermetallic Compounds. Nano Res. 2022, 15, 8819–8825. [Google Scholar] [CrossRef]
Sample | ICP Results (wt%) | Theory of Loads (wt%) | Theoretical Metal Molar Ratio (Pd: Cu) | Actual Metal Molar Ratio (Pd: Cu) | ||
---|---|---|---|---|---|---|
Pd | Cu | Pd | Cu | |||
Pd1Cu4/XC-72 | 7.6 | 15.4 | 8.8 | 21.2 | 0.40 | 0.47 |
Pd2Cu3/XC-72 | 12.4 | 11.1 | 15.8 | 14.2 | 1.07 | 1.07 |
PdCu/XC-72 | 18.2 | 10.2 | 18.7 | 11.3 | 1.60 | 1.72 |
Pd3Cu2/XC-72 | 19.7 | 6.9 | 21.4 | 8.6 | 2.40 | 2.74 |
Pd4Cu1/XC-72 | 25.8 | 3.5 | 26.1 | 3.9 | 6.44 | 7.08 |
Catalyst | Test Condition | Scan Rate (mV/s) | Mass Activity (mA/mg) | Refs. |
---|---|---|---|---|
Pd3Cu2/XC-72 | 1 M KOH + 1 M Methanol | 50 mV/s | 1719 mA/mg | This Work |
Pd/C | 1 M KOH + 1 M methanol | 50 mV/s | 550 mA/mg | 2019 [32] |
Solid carbon sphere-supported Pd-CeO2 nanoparticles | 1 M KOH + 1 M methanol | 50 mV/s | 900 mA/mg | 2019 [32] |
Pd59Cu33 Ru8 NSs | 1 M KOH + 1 M methanol | 50 mV/s | 1660.8 mA/mg | 2019 [33] |
Pd-PdO PNTs-260 | 1 M KOH + 1 M methanol | 50 mV/s | 1111.3 mA/mg | 2020 [34] |
Pd59Fe27Pt14 NMs | 1 M KOH + 1 M methanol | 50 mV/s | 1610 mA/mg | 2020 [35] |
Pd3Sn2 IMC | 1 M KOH + 1 M methanol | 50 mV/s | 1300 mA/mg | 2022 [36] |
Pd/Se−Ti3C2 | 1 M KOH + 1 M methanol | 50 mV/s | 1046.2 mA/mg | 2022 [27] |
Pd72Cu14Co14/rGO | 1 M KOH + 1 M methanol | 50 mV/s | 1062 mA/mg | 2019 [31] |
Pd1Cu4/XC-72 | Pd2Cu3/XC-72 | PdCu/XC-72 | Pd3Cu2/XC-72 | Pd4Cu1/XC-72 | |
---|---|---|---|---|---|
Mass activity | 311 mA/mgPd | 1130 mA/mgPd | 1189 mA/mgPd | 1719 mA/mgPd | 1409 mA/mgPd |
If/Ib | 3.41287 | 4.01877 | 1.999 | 5.307 | 4.785 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wang, S.; Li, H.; Guo, P.; Li, Y.; Ji, D.; Zhao, X. Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells. Nanomaterials 2022, 12, 4210. https://doi.org/10.3390/nano12234210
Li G, Wang S, Li H, Guo P, Li Y, Ji D, Zhao X. Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells. Nanomaterials. 2022; 12(23):4210. https://doi.org/10.3390/nano12234210
Chicago/Turabian StyleLi, Guixian, Shoudeng Wang, Hongwei Li, Peng Guo, Yanru Li, Dong Ji, and Xinhong Zhao. 2022. "Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells" Nanomaterials 12, no. 23: 4210. https://doi.org/10.3390/nano12234210
APA StyleLi, G., Wang, S., Li, H., Guo, P., Li, Y., Ji, D., & Zhao, X. (2022). Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells. Nanomaterials, 12(23), 4210. https://doi.org/10.3390/nano12234210