Crystallinity Effect on Electrical Properties of PEALD–HfO2 Thin Films Prepared by Different Substrate Temperatures
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fina, I.; Sánchez, F. Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices. ACS Appl. Electron. Mater. 2021, 3, 1530–1549. [Google Scholar] [CrossRef]
- Schroeder, U.; Park, M.H.; Mikolajick, T.; Hwang, C.S. The Fundamentals and Applications of Ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653–669. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, M.; Zeng, T.; Song, C.; Chai, Y.; Shao, Y.; Zhang, R.; Zhao, J.; Li, D.; Shao, J. HfO2/SiO2 Anti-Reflection Films for UV Lasers via Plasma-Enhanced Atomic Layer Deposition. J. Alloys Compd. 2021, 859, 157875. [Google Scholar] [CrossRef]
- Falmbigl, M.; Godin, K.; George, J.; Mühlig, C.; Rubin, B. Effect of Annealing on Properties and Performance of HfO2 /SiO2 Optical Coatings for UV-Applications. Opt. Express 2022, 30, 12326. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, S. Analog/RF Performance Projection of Ultra-Steep Si Doped HfO2 Based Negative Capacitance Electrostatically Doped TFET: A Process Variation Resistant Design. Silicon 2022, 14, 4865–4877. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, D.; Liu, W.; Zhang, Y.; Li, S.; Wang, J.; Ali, F. Importance of Tailoring the Thickness of SiO2 Interlayer in the Observation of Ferroelectric Characteristics in Yttrium Doped HfO2 Films on Silicon. Vacuum 2021, 183, 109835. [Google Scholar] [CrossRef]
- Yun, M.J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H.-D. A Nonlinear Resistive Switching Behaviors of Ni/HfO2/TiN Memory Structures for Self-Rectifying Resistive Switching Memory. Mater. Charact. 2021, 182, 111578. [Google Scholar] [CrossRef]
- Ren, Z.; Lv, D.; Xu, J.; Su, K.; Zhang, J.; Wang, D.; Wu, Y.; Zhang, J.; Hao, Y. Performance of H-Diamond MOSFETs with High Temperature ALD Grown HfO2 Dielectric. Diam. Relat. Mater. 2020, 106, 107846. [Google Scholar] [CrossRef]
- Lepadatu, A.M.; Palade, C.; Slav, A.; Maraloiu, A.V.; Lazanu, S.; Stoica, T.; Logofatu, C.; Teodorescu, V.S.; Ciurea, M.L. Single Layer of Ge Quantum Dots in HfO2 for Floating Gate Memory Capacitors. Nanotechnology 2017, 28, 175707. [Google Scholar] [CrossRef]
- Palade, C.; Lepadatu, A.-M.; Slav, A.; Teodorescu, V.S.; Stoica, T.; Ciurea, M.L.; Ursutiu, D.; Samoila, C. Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared. Materials 2021, 14, 7040. [Google Scholar] [CrossRef]
- Vildanova, M.F.; Nikolskaia, A.B.; Kozlov, S.S.; Shevaleevskiy, O.I. Charge Transfer Mechanisms in Multistructured Photoelectrodes for Perovskite Solar Cells. J. Phys. Conf. Ser. 2020, 1697, 012187. [Google Scholar] [CrossRef]
- Löckinger, J.; Nishiwaki, S.; Bissig, B.; Degutis, G.; Romanyuk, Y.E.; Buecheler, S.; Tiwari, A.N. The Use of HfO2 in a Point Contact Concept for Front Interface Passivation of Cu(In,Ga)Se2 Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 195, 213–219. [Google Scholar] [CrossRef]
- Jha, R.K.; Singh, P.; Goswami, M.; Singh, B.R. Impact of HfO 2 as a Passivation Layer in the Solar Cell Efficiency Enhancement in Passivated Emitter Rear Cell Type. J. Nanosci. Nanotechnol. 2020, 20, 3718–3723. [Google Scholar] [CrossRef]
- Huang, C.; Yu, H. High Performance Polymer Solar Cells Based HfO2 Passivated 2D-HfX2 (X S, Se) as a Hole Transport Layers. Nano Energy 2022, 103, 107750. [Google Scholar] [CrossRef]
- Bendova, M.; Pytlicek, Z.; Prasek, J.; Mozalev, A. The Growth and Unique Electronic Properties of the Porous-Alumina-Assisted Hafnium-Oxide Nanostructured Films. Electrochim. Acta 2019, 327, 135029. [Google Scholar] [CrossRef]
- Zahoor, A.; Xu, C.; Shahid, T.; Anwar, M.A.; Song, Z. Effects of O2 Flux on Structure, Optical Properties and Hydrophobicity of Highly Emissive Antireflective HfO2 Thin Films by Magnetron Sputtering. Vacuum 2022, 197, 110824. [Google Scholar] [CrossRef]
- Dhanunjaya, M.; Manikanthababu, N.; Ojha, S.; Pojprapai, S.; Pathak, A.P.; Nageswara Rao, S.V.S. Effects of Growth Parameters on HfO2 Thin-Films Deposited by RF Magnetron Sputtering. Radiat. Eff. Defects Solids 2022, 177, 15–26. [Google Scholar] [CrossRef]
- Wan, H.W.; Lin, Y.H.; Lin, K.Y.; Chang, T.W.; Cai, R.F.; Kwo, J.; Hong, M. Ultra-High Thermal Stability and Extremely Low D on HfO2/p-GaAs(001) Interface. Microelectron. Eng. 2017, 178, 154–157. [Google Scholar] [CrossRef]
- Vendra, S.S.L.; Antony, N.; Koroleva, E.; Filimonov, A.; Vakhrushev, S.; Kumar, R. Space-Charge Polarisation Dielectric Behaviour of Precursor Derived Monoclinic HfO2. Ceram. Int. 2022, 48, 13063–13070. [Google Scholar] [CrossRef]
- Stesmans, A.; Afanas’ev, V.V. Defect Correlated with Positive Charge Trapping in Functional HfO2 Layers on (100)Si Revealed by Electron Spin Resonance: Evidence for Oxygen Vacancy? Microelectron. Eng. 2017, 178, 112–115. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, Z.; Yin, X.; Chen, C.; Fan, Z.; Qin, M.; Zeng, M.; Zhou, G.; Gao, X.; Lu, X.; et al. Ferroelectricity in Dopant-Free HfO2 Thin Films Prepared by Pulsed Laser Deposition. J. Materiomics 2022, 8, 311–318. [Google Scholar] [CrossRef]
- Nand, M.; Tripathi, S.; Rajput, P.; Kumar, M.; Kumar, Y.; Mandal, S.K.; Urkude, R.; Gupta, M.; Dawar, A.; Ojha, S.; et al. Different Polymorphs of Y Doped HfO2 Epitaxial Thin Films: Insights into Structural, Electronic and Optical Properties. J. Alloys Compd. 2022, 928, 167099. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J.; Verheijen, M.A.; Bol, A.A.; Kessels, W.M.M. Sub-Nanometer Dimensions Control of Core/Shell Nanoparticles Prepared by Atomic Layer Deposition. Nanotechnology 2015, 26, 094002. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Chang, J.P. Achieving Atomistic Control in Materials Processing by Plasma–Surface Interactions. J. Phys. Appl. Phys. 2017, 50, 253001. [Google Scholar] [CrossRef]
- Profijt, H.B.; Potts, S.E.; van de Sanden, M.C.M.; Kessels, W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J. Vac. Sci. Technol. Vac. Surf. Films 2011, 29, 050801. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.J.; Mackus, A.J.M.; Verheijen, M.A.; Longo, V.; Bol, A.A.; Kessels, W.M.M. Atomic Layer Deposition of High-Purity Palladium Films from Pd(Hfac)2 and H2 and O2 Plasmas. J. Phys. Chem. C 2014, 118, 8702–8711. [Google Scholar] [CrossRef]
- Gao, J.; He, G.; Zhang, J.W.; Liu, Y.M.; Sun, Z.Q. Deposition Temperature Dependent Optical and Electrical Properties of ALD HfO2 Gate Dielectrics Pretreated with Tetrakisethylmethylamino Hafnium. Mater. Res. Bull. 2015, 70, 840–846. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, D.; Yang, W.; Chen, X.; Zhao, H.; Hou, J.; Yang, P. Structure and Optical Properties of HfO2 Films on Si (100) Substrates Prepared by ALD at Different Temperatures. Phys. B Condens. Matter 2020, 584, 412065. [Google Scholar] [CrossRef]
- Blaschke, D.; Munnik, F.; Grenzer, J.; Rebohle, L.; Schmidt, H.; Zahn, P.; Gemming, S. A Correlation Study of Layer Growth Rate, Thickness Uniformity, Stoichiometry, and Hydrogen Impurity Level in HfO2 Thin Films Grown by ALD between 100 °C and 350 °C. Appl. Surf. Sci. 2020, 506, 144188. [Google Scholar] [CrossRef]
- Forouzmehr, M.; Zambou, S.; Lahtonen, K.; Honkanen, M.; Nazmul Anam, R.M.; Ruhanen, A.; Rokaya, C.; Lupo, D.; Berger, P.R. Selective Atomic Layer Deposition on Flexible Polymeric Substrates Employing a Polyimide Adhesive as a Physical Mask. J. Vac. Sci. Technol. A 2021, 39, 012405. [Google Scholar] [CrossRef]
- Park, I.S.; Lee, T.; Choi, D.K.; Ahn, J. Metal precursor effects on deposition and interfacial characteristics of HfO2 dielectrics grown by atomic layer deposition. J. Korean Phys. Soc. 2006, 49, 544. [Google Scholar]
- Xu, K.; Milanov, A.P.; Parala, H.; Wenger, C.; Baristiran-Kaynak, C.; Lakribssi, K.; Toader, T.; Bock, C.; Rogalla, D.; Becker, H.-W.; et al. Atomic Layer Deposition of HfO2 Thin Films Employing a Heteroleptic Hafnium Precursor. Chem. Vap. Depos. 2012, 18, 27–35. [Google Scholar] [CrossRef]
- Sharma, A.; Longo, V.; Verheijen, M.A.; Bol, A.A.; Kessels, W.M.M. (Erwin) Atomic Layer Deposition of HfO2 Using HfCp(NMe2)3 and O2 Plasma. J. Vac. Sci. Technol. Vac. Surf. Films 2017, 35, 01B130. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Kaneda, Y.; Ito, A. Highly Self-Oriented Growth of (020) and (002) Monoclinic HfO2 Thick Films Using Laser Chemical Vapor Deposition. Ceram. Int. 2020, 46, 1810–1815. [Google Scholar] [CrossRef]
- Palade, C.; Lepadatu, A.-M.; Slav, A.; Cojocaru, O.; Iuga, A.; Maraloiu, V.A.; Moldovan, A.; Dinescu, M.; Teodorescu, V.S.; Stoica, T.; et al. A Nanoscale Continuous Transition from the Monoclinic to Ferroelectric Orthorhombic Phase inside HfO2 Nanocrystals Stabilized by HfO2 Capping and Self-Controlled Ge Doping. J. Mater. Chem. C 2021, 9, 12353–12366. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, T.J.; Kim, S.K.; Cho, D.Y.; Jung, H.S.; Lee, S.Y.; Hwang, C.S. Chemical structures and electrical properties of atomic layer deposited HfO2 thin films grown at an extremely low temperature (≤100 °C) using O3 as an oxygen source. Appl. Surf. Sci. 2014, 292, 852–856. [Google Scholar] [CrossRef]
- Lapteva, M.; Beladiya, V.; Riese, S.; Hanke, P.; Otto, F.; Fritz, T.; Schmitt, P.; Stenzel, O.; Tünnermann, A.; Szeghalmi, A. Influence of Temperature and Plasma Parameters on the Properties of PEALD HfO2. Opt. Mater. Express 2021, 11, 1918. [Google Scholar] [CrossRef]
- Baek, J.; Choi, W.; Kim, H.; Cheon, S.; Byun, Y.; Jeon, W.; Park, J.-S. Plasma-Enhanced Atomic Layer Deposited HfO2 Films Using a Novel Heteroleptic Cyclopentadienyl-Based Hf Precursor. Ceram. Int. 2021, 47, 29030–29035. [Google Scholar] [CrossRef]
- Kim, K.-M.; Jang, J.S.; Yoon, S.-G.; Yun, J.-Y.; Chung, N.-K. Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition. Materials 2020, 13, 2008. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Yang, H.; Liang, Y.; He, K.; Sun, W.; Lin, H.-H.; Yao, S.; Lu, X.; Wan, L.; et al. Investigation of HfO2 Thin Films on Si by X-Ray Photoelectron Spectroscopy, Rutherford Backscattering, Grazing Incidence X-Ray Diffraction and Variable Angle Spectroscopic Ellipsometry. Crystals 2018, 8, 248. [Google Scholar] [CrossRef]
- Park, S.; Park, B.-E.; Yoon, H.; Lee, S.; Nam, T.; Cheon, T.; Kim, S.-H.; Cheon, H.; Im, S.; Seong, T.; et al. Comparative Study on Atomic Layer Deposition of HfO2 via Substitution of Ligand Structure with Cyclopentadiene. J. Mater. Chem. C 2020, 8, 1344–1352. [Google Scholar] [CrossRef]
- McPherson, J.; Kim, J.-Y.; Shanware, A.; Mogul, H. Thermochemical Description of Dielectric Breakdown in High Dielectric Constant Materials. Appl. Phys. Lett. 2003, 82, 2121–2123. [Google Scholar] [CrossRef]
- Agrawal, K.; Patil, V.; Barhate, V.; Yoon, G.; Lee, Y.-J.; Mahajan, A.; Yi, J. Temperature-Dependent Study of Slow Traps Generation Mechanism in HfO2/GeON/Ge(1 1 0) Metal Oxide Semiconductor Devices. Solid-State Electron. 2020, 167, 107797. [Google Scholar] [CrossRef]
- Popov, V.P.; Antonov, V.A.; Gutakovskiy, A.K.; Tyschenko, I.E.; Vdovin, V.I.; Miakonkikh, A.V.; Rudenko, K.V. Hafnia and Alumina Stacks as UTBOXs in Silicon-on Insulator. Solid-State Electron. 2020, 168, 107734. [Google Scholar] [CrossRef]
- Agrawal, K.S.; Patil, V.S.; Khairnar, A.G.; Mahajan, A.M. HfO2 Gate Dielectric on Ge (1 1 1) with Ultrathin Nitride Interfacial Layer Formed by Rapid Thermal NH3 Treatment. Appl. Surf. Sci. 2016, 364, 747–751. [Google Scholar] [CrossRef]
- Ganesan, R.; Murdoch, B.J.; Partridge, J.G.; Bathgate, S.; Treverrow, B.; Dong, X.; Ross, A.E.; McCulloch, D.G.; McKenzie, D.R.; Bilek, M.M.M. Optimizing HiPIMS Pressure for Deposition of High-k (k = 18.3) Amorphous HfO2. Appl. Surf. Sci. 2016, 365, 336–341. [Google Scholar] [CrossRef]
- Yoo, Y.B.; Park, J.H.; Lee, K.H.; Lee, H.W.; Song, K.M.; Lee, S.J.; Baik, H.K. Solution-Processed High-k HfO2 Gate Dielectric Processed under Softening Temperature of Polymer Substrates. J. Mater. Chem. C 2013, 1, 1651. [Google Scholar] [CrossRef]
- Weng, J.; Chen, W.; Xia, W.; Zhang, J.; Jiang, Y.; Zhu, G. Low-Temperature Solution-Based Fabrication of High-k HfO2 Dielectric Thin Films via Combustion Process. J. Sol-Gel Sci. Technol. 2017, 81, 662–668. [Google Scholar] [CrossRef]
- Nath, M.; Roy, A. Interface and Electrical Properties of Ultra-Thin HfO2 Film Grown by Radio Frequency Sputtering. Phys. B Condens. Matter 2016, 482, 43–50. [Google Scholar] [CrossRef]
- Lupina, G.; Lukosius, M.; Kitzmann, J.; Dabrowski, J.; Wolff, A.; Mehr, W. Nucleation and Growth of HfO2 Layers on Graphene by Chemical Vapor Deposition. Appl. Phys. Lett. 2013, 103, 183116. [Google Scholar] [CrossRef]
- Choudhury, D.; Mandia, D.J.; Langeslay, R.R.; Yanguas-Gil, A.; Letourneau, S.; Sattelberger, A.P.; Balasubramanium, M.; Mane, A.U.; Delferro, M.; Elam, J.W. Atomic Layer Deposition of HfO2 Films Using Carbon-Free Tetrakis(Tetrahydroborato)Hafnium and Water. J. Vac. Sci. Technol. A 2020, 38, 042407. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Bubbler temperature (°C) | 120 |
TEMAH pulse time (s) | 1.6 |
TEMAH purge time (s) | 10 |
TEMAH carry gas flow rate (sccm) | 50 |
O2 pulse time (s) | 10 |
O2 purge time (s) | 12 |
O2 flow stabilization (s) | 2 |
O2 RF power on (s) | 7 |
Ar flow rate (sccm) | 50 |
O2 flow rate (sccm) | 100 |
Substrate temperature (°C) | 100–450 |
O2/Ar plasma Power (W) | 2500 |
Preparation Method | Film Thickness (nm) | Dielectric Constant | Breakdown Electric Field (MV/cm) | Density (g/cm3) | References |
---|---|---|---|---|---|
Spin-coating | 100 | 14.1 | 6.2 | 7.8 | [48] |
Spin-coating | 20 | 16.5 | 5.03 | _ | [49] |
RF sputtering | 5 | 14 | _ | _ | [50] |
RF sputtering | 8 | 15 | _ | _ | [9] |
CVD | 50 | 16 | _ | _ | [51] |
HIPIMS | _ | 18.3 | _ | _ | [47] |
thermal ALD | 43 | 13 | _ | 9 | [52] |
thermal ALD | 5.1 | 16.64 | 4.8 | _ | [53] |
PEALD | 30 | 13.67 | 4.16 | 10.2 | [39] |
PEALD | 4.7 | 16.64 | _ | _ | [44] |
PEALD PEALD | 5.06 20 | 18.6 23 | _ _ | _ _ | [46] [45] |
PEALD | 30 | 18.21 | 5.88 | 10.22 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-Y.; Han, J.; Peng, D.-C.; Ruan, Y.-J.; Wu, W.-Y.; Wuu, D.-S.; Huang, C.-J.; Lien, S.-Y.; Zhu, W.-Z. Crystallinity Effect on Electrical Properties of PEALD–HfO2 Thin Films Prepared by Different Substrate Temperatures. Nanomaterials 2022, 12, 3890. https://doi.org/10.3390/nano12213890
Zhang X-Y, Han J, Peng D-C, Ruan Y-J, Wu W-Y, Wuu D-S, Huang C-J, Lien S-Y, Zhu W-Z. Crystallinity Effect on Electrical Properties of PEALD–HfO2 Thin Films Prepared by Different Substrate Temperatures. Nanomaterials. 2022; 12(21):3890. https://doi.org/10.3390/nano12213890
Chicago/Turabian StyleZhang, Xiao-Ying, Jing Han, Duan-Chen Peng, Yu-Jiao Ruan, Wan-Yu Wu, Dong-Sing Wuu, Chien-Jung Huang, Shui-Yang Lien, and Wen-Zhang Zhu. 2022. "Crystallinity Effect on Electrical Properties of PEALD–HfO2 Thin Films Prepared by Different Substrate Temperatures" Nanomaterials 12, no. 21: 3890. https://doi.org/10.3390/nano12213890
APA StyleZhang, X.-Y., Han, J., Peng, D.-C., Ruan, Y.-J., Wu, W.-Y., Wuu, D.-S., Huang, C.-J., Lien, S.-Y., & Zhu, W.-Z. (2022). Crystallinity Effect on Electrical Properties of PEALD–HfO2 Thin Films Prepared by Different Substrate Temperatures. Nanomaterials, 12(21), 3890. https://doi.org/10.3390/nano12213890