New Insights on the Spin Glass Behavior in Ferrites Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, H.; Udochukwu, O.; Yao, C.; Yang, F. Transition metal ion-doped ferrites for bioimanging and cancer therapy. Transl. Oncol. 2022, 15, 101264. [Google Scholar] [CrossRef] [PubMed]
- Javalakshmi, R.; Jeyanthi, J.; Aswin Sidhaarth, K.R. Versatile application of cobalt ferrite nanoparticles for the removal of heavy metals and dyes from aqueous solution. Environ. Nanotechnol. Monit. Manag. 2022, 12, 100659. [Google Scholar]
- Miri, A.; Sarani, M.; Najafidoust, A.; Mehrabani, M.; Zadech, F.A.; Varma, R.S. Photocatalytic performance and cytotoxic activity of green-synthesized ferrite nanoparticles. Mater. Res. Bull. 2022, 149, 111706. [Google Scholar] [CrossRef]
- Kumar, P.A.; Ray, S.; Chakraverty, S.; Sarma, D.D.; Anil Kumar, P. Magnetoresistance and Electroresistance Effects in Fe3O4 Nanoparticle System. J. Exp. Nanosci. 2014, 9, 391–397. [Google Scholar] [CrossRef]
- Bortnic, R.; Szatmari, A.; Souca, G.; Hirian, R.; Dudric, R.; Barbu-Tudoran, L.; Toma, V.; Tetean, R.; Burzo, E. New Insights into the Magnetic Properties of CoFe2O4@SiO2@Au Magnetoplasmonic Nanoparticles. Nanomaterials 2022, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- Rana, G.; Johri, U.C. A Study on Structural and Magnetic Properties of Ni-Substituted Magnetite Nanoparticles. J. Alloys Compd. 2013, 577, 376–381. [Google Scholar] [CrossRef]
- Souca, G.; Dudric, R.; Iacovita, C.; Moldovan, A.; Frentiu, T.; Stiufiuc, R.; Lucaciu, C.M.; Tetean, R.; Burzo, E. Physical Properties of Zn Doped Fe3O4 Nanoparticles. J. Optoelectron. Adv. Mater. 2020, 22, 298–302. [Google Scholar]
- Rao, K.S.; Choudary, G.S.V.R.K.; Rao, K.H.; Sujatha, C. Structural and Magnetic Properties of Ultrafine CoFe2O Nanoparticles. Procedia Mater. Sci. 2015, 10, 19–27. [Google Scholar] [CrossRef]
- Verwey, E. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature 1939, 144, 327–328. [Google Scholar] [CrossRef]
- Pentcheva, R.; Moritz, W.; Rundgren, J.; Frank, S.; Schrupp, D.; Scheffler, M. A Combined DFT/LEED-Approach for Complex Oxide Surface Structure Determination: Fe3O4 (001). Surf. Sci. 2008, 602, 1299–1305. [Google Scholar] [CrossRef]
- Shimizu, T.K.; Jung, J.; Kato, H.S.; Kim, Y.; Kawai, M. Termination and Verwey Transition of the (111) Surface of Magnetite Studied by Scanning Tunneling Microscopy and First-Principles Calculations. Phys. Rev. B 2010, 81, 235429. [Google Scholar] [CrossRef]
- Limot, L.; Kröger, J.; Berndt, R.; Garcia-Lekue, A.; Hofer, W.A. Atom Transfer and Single-Adatom Contacts. Phys. Rev. Lett. 2005, 94, 126102. [Google Scholar] [CrossRef] [PubMed]
- Berdunov, N.; Murphy, S.; Mariotto, G.; Shvets, I.V. Room Temperature Study of a Strain-Induced Electronic Superstructure on a Magnetite (111) Surface. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 70, 085404. [Google Scholar] [CrossRef]
- Werner Weiss, W.R. Surface Chemistry and Catalysis on Well-Defined Epitaxial Iron-Oxide Layers. Prog. Surf. Sci. 2002, 70, 1–151. [Google Scholar] [CrossRef]
- Lennie, A.R.; Condon, N.G.; Leibsle, F.M.; Murray, P.W.; Thornton, G.; Vaughan, D.J. Structures of Fe3O4 (111) Surfaces Observed by Scanning Tunneling Microscopy. Phys. Rev. B 1996, 53, 10244–10253. [Google Scholar] [CrossRef]
- Pentcheva, R.; Wendler, F.; Meyerheim, H.L.; Moritz, W.; Jedrecy, N.; Scheffler, M. Jahn-Teller Stabilization of a “Polar” Metal Oxide Surface: Fe3O4 (001). Phys. Rev. Lett. 2005, 94, 126101. [Google Scholar] [CrossRef]
- Rim, K.T.; Mu, T.; Fitts, J.P.; Adib, K.; Nicholas, l.; Iii, C.; Osgood, R.M.; Batista, E.R.; Friesner, R.A.; Joyce, S.A.; et al. Scanning Tunneling Microscopy and Theoretical Study of Competitive Reactions in the Dissociative Chemisorption of CCl4 on Iron Oxide Surfaces. J. Phys. Chem. B 2004, 108, 16753–16760. [Google Scholar] [CrossRef]
- Novotny, Z.; Mulakaluri, N.; Edes, Z.; Schmid, M.; Pentcheva, R.; Diebold, U.; Parkinson, G.S. Probing the Surface Phase Diagram of Fe3O4 (001) towards the Fe-Rich Limit: Evidence for Progressive Reduction of the Surface. Phys. Rev. B 2013, 87, 195410. [Google Scholar] [CrossRef]
- Asakawa, K.; Kawauchi, T.; Zhang, X.; Katsuyuki Fukutani, F. Non-Collinear Magnetic Structure on the Fe3O4 (111) Surface. J. Phys. Soc. Jpn. 2017, 86, 074601. [Google Scholar] [CrossRef]
- Batlle, X.; Labarta, A. Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. J. Phys. D Appl. Phys. 2002, 35, 201. [Google Scholar] [CrossRef]
- Berkowitz, A.E.; Schuele, W.J.; Flanders, P.J. Influence of Crystallite Size on the Magnetic Properties of Acicular γ-Fe2O3 Particles. J. Appl. Phys. 1968, 39, 1261. [Google Scholar] [CrossRef]
- Coey, J.M.D. Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites. Phys. Rev. Lett. 1971, 27, 1140–1142. [Google Scholar] [CrossRef]
- Ochi, A.; Watanabe, K.; Kiyama, M.; Shinjo, T.; Bando, Y.; Toshio Takada, T. Surface Magnetic Properties of γ-Fe2O3 by 57Fe Mössbauer Emission Spectroscopy. J. Phys. Soc. Jpn. 1981, 50, 2777–2778. [Google Scholar] [CrossRef]
- Millan, A.; Urtizberea, U.; Silva, N.J.O.; Palacio, F.; Amaral, V.S.; Snoeck, E.; Serin, V. Surface Effects in Maghermitr Nanoparticles. J. Magn. Magn. Mater. 2007, 312, L5–L9. [Google Scholar] [CrossRef]
- Haneda, K.; Morrish, A.H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 1988, 63, 1204. [Google Scholar] [CrossRef]
- Parker, F.T.; Foster, M.W.; Margulies, D.T.; Berkowitz, A.E. Spin Canting, Surface Magnetization, and Finite-Size Effects in γ-Fe2O3 Particles. Phys. Rev. B 1993, 47, 7885–7891. [Google Scholar] [CrossRef]
- Morales, M.P.; Serna, C.J.; Bødker, F.; Mørup, S. Spin Canting Due to Structural Disorder in Maghemite. J. Phys. Condens. Matter 1997, 9, 5461–5467. [Google Scholar] [CrossRef]
- Martínez, B.; Obradors, X.; Balcells, L.; Rouanet, A.; Monty, C. Low Temperature Surface Spin-Glass Transition in γ-Fe2O3 Nanoparticles. Phys. Rev. Lett. 1998, 80, 181–184. [Google Scholar] [CrossRef]
- Köseoglu, Y.; Kavas, H. Size and Surface Effects on Magnetic Properties of Fe3O4 Nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 584–590. [Google Scholar] [CrossRef]
- Mazo-Zuluaga, J.; Restrepo, J.; Mejía-López, J. Surface Anisotropy of a Fe3O4 Nanoparticle: A Simulation Approach. Phys. B Condens. Matter 2007, 398, 187–190. [Google Scholar] [CrossRef]
- Kodama, R.H.; Berkowitz, A.E.; McNiff, E.J., Jr.; Foner, S. Surface Spin Disorder in NiFe2O4 Nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Salafranca, J.; Gazquez, J.; Pérezpérez, N.; Labarta, A.; Pantelides, S.T.; Pennycook, S.J.; Batlle, X.; Varela, M. Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces. Nano Lett. 2012, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yue, F.J.; Wu, D. Enhanced Magnetoresistance in Self-Assembled Monolayer of Oleic Acid Molecules on Nanoparticles. Appl. Phys. Lett. 2009, 94, 12507. [Google Scholar] [CrossRef]
- Dudric, R.; Souca, G.; Szatmári, Á.; Szilárd, T.; Nitica, S.; Iacovita, C.; Moldovan, A.I.; Stiufiuc, R.; Tetean, R.; Burzo, E. Magnetite Nanoparticles for Medical Applications. AIP Conf. Proc. 2020, 2218, 030014. [Google Scholar] [CrossRef]
- Bouhbou, M.; Džubinská, A.; Reiffers, M.; Bessais, L.; Lemziouka, H.; Lassri, M.; Tuyikeze, V.; Fraija, F.; Sajeddine, M.; Lassri, H. Magnetic, Structural and Magnetocaloric Effect Investigations on the Substituted Spinel Mg1−xZnxFe2O4 (0 ≤ x ≤ 1) Prepared by Sol-Gel Method. J. Alloys Compd. 2022, 896, 162836. [Google Scholar] [CrossRef]
- Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 Nanoparticles and Their Magnetic Properties. Procedia Eng. 2012, 27, 632–637. [Google Scholar] [CrossRef]
- Kotsikau, D.; Pankov, V.; Petrova, E.; Natarov, V.; Filimonov, D.; Pokholok, K. Structural, Magnetic and Hyperfine Characterization of ZnxFe3–XO4 Nanoparticles Prepared by Sol-Gel Approach via Inorganic Precursors. J. Phys. Chem. Solids 2018, 114, 64–70. [Google Scholar] [CrossRef]
- Lu, Z.L.; Lv, L.Y.; Zhu, J.M.; Li, S.D.; Liu, X.C.; Zou, W.Q.; Zhang, F.M.; Du, Y.W. Magnetic and Transport Property Studies of Nanocrystalline ZnxFe3–XO4. Solid State Commun. 2006, 137, 528–532. [Google Scholar] [CrossRef]
- Alae, M.; Kerroum, A.; Iacovita, C.; Baaziz, W.; Ihiawakrim, D.; Rogez, G.; Benaissa, M.; Lucaciu, C.M.; Ersen, O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3–XO4 Nanoparticles. Internat. J. Mol. Sci. 2020, 21, 7775. [Google Scholar]
- Tejada, J.; Martinez, B.; Labarta, A.; Chudnovsky, E.M. Correlated Spin Glass Generated by Structural Disorder in the Amorphous Dy6Fe74B20 Alloy. Phys. Rev. B 1991, 44, 7698–7700. [Google Scholar] [CrossRef]
- Srivastava, C.M.; Srinivasan, G.; Nanadikar, N.G. Exchange Constants in Spinel Ferrites. Phys. Rev. B 1979, 19, 499–508. [Google Scholar] [CrossRef]
- Sugiura, Y. Exchange Interaction and Cubic Crystal Field Splitting Parameter of Fe3+ in Spinel Structure. J. Phys. Soc. Jpn. 1960, 15, 1217–1222. [Google Scholar] [CrossRef]
- Cobos, M.A.; Hernando, A.; Marco, J.F.; Puente-Orench, I.; Jimenez, J.A.; Llorente, I.; Garcia-Escorial, A.; de la Presa, P. Unveiling the hidden entropy in ZnFe2O4. Materials 2022, 15, 1198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Satpathy, S. Electron States, Magnetism, and the Verwey Transition in Magnetite. Phys. Rev. B 1991, 44, 13319–13331. [Google Scholar] [CrossRef]
- Pentcheva, R.; Pickett, W.E. Electronic Phenomena at Complex Oxide Interfaces: Insights from First Principles. J. Phys. Condens. Matter 2010, 22, 043001. [Google Scholar] [CrossRef]
- Mitra, A.; Barick, B.; Mohapatra, J.; Sharma, H.; Meena, S.S.; Aslam, M. Large Tunneling Magnetoresistance in Octahedral Fe3O4 Nanoparticles. AIP Adv. 2016, 6, 55007. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.-W.; Wang, C.-S.; Wang, Y.-J.; Zhan, W.-S.; Li, F.-Y.; Jin, C.-Q.; Meng, F.-B.; Li, Y.-X. Magnetoresistance and Magnetic Properties of Fe3O4 Nanoparticle Compacts. Chin. Phys. 2002, 11, 178–182. [Google Scholar] [CrossRef]
- Sun, L.; Ban, D.; Liu, E.; Li, X.; Peng, H.; Yao, Z.; Huang, Z.; Zhai, Y.; Zhai, H. Effect of Substrate Temperature on Antiphase Boundaries and Spin Polarization of Thin Fe3O4 Film on Si (100). Thin Solid Film. 2020, 693, 137698. [Google Scholar] [CrossRef]
- Chou, C.Y.; Kuo, P.C.; Yao, Y.D.; Wu, T.H.; Chen, S.C.; Sun, A.C.; Huang, C.H.; Chen, J.W. Magnetoresistance and Microstructure of the Sintered Ferrite of the Mixture of Fe3O4 and Co-Ferrite Powder. Phys. Stat. Sol. 2004, 1, 3410–3413. [Google Scholar] [CrossRef]
- Serrate, D.; De Teresa, J.M.; Algarabel, P.A.; Fernández-Pacheco, R.; Galibert, J.; Ibarra, M.R. Grain-boundary magnetoresistance up to 42 T in cold-pressed Fe3O4 nanopowders. J. Appl. Phys. 2005, 97, 084317. [Google Scholar] [CrossRef]
- Zeng, H.; Black, C.T.; Sandstrom, R.L.; Rice, P.M.; Murray, C.B.; Sun, S. Magnetotransport of Magnetite Nanoparticle Arrays. Phys. Rev. B 2006, 73, 020402. [Google Scholar] [CrossRef]
- Kohiki, S.; Kinoshita, T.; Nara, K.; Akiyama-Hasegawa, K.; Mitome, M. Large, Negative Magnetoresistance in an Oleic Acid-Coated Fe3O4 Nanocrystal Self-Assembled Film. ACS Appl. Mater. Interfaces 2013, 5, 58. [Google Scholar] [CrossRef][Green Version]
- Mitra, A.; Mohapatra, J.; Sharma, H.; Meena, S.S.; Aslam, M. Controlled Synthesis and Enhanced Tunnelling Magnetoresistance in Oriented Fe3O4 Nanorod Assemblies. J. Phys. D Appl. Phys. 2018, 51, 085002. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, L.; Klavins, P. Extrinsic Magnetoresistance in Magnetite Nanoparticles. J. Appl. Phys. 2003, 93, 7951. [Google Scholar] [CrossRef]
- Wang, J.; Shi, J.; Tian, D.; Deng, H.; Li, Y.; Song, P.; Chen, C. Fabrication and enhanced magnetoresistance of SiO2-coated Fe3O4 nanosphere compact. Appl. Phys. Lett. 2007, 90, 213106. [Google Scholar] [CrossRef]
- Kant, K.M.; Sethupathi, K.; Rao, M.S.R. Extrinsic Magnetoresistance in Magnetite Nanoparticles. J. Appl. Phys. 2008, 103, 7951. [Google Scholar] [CrossRef]
- Kumar, P.A.; Ray, S.; Chakraverty, S.; Sarma, D. Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles. Appl. Phys. Lett. 2013, 103, 102406. [Google Scholar] [CrossRef]
- Wang, W.; Yu, M.; Batzill, M.; He, J.; Diebold, U.; Tang, J. Enhanced Tunneling Magnetoresistance and High-Spin Polarization at Room Temperature in a Polystyrene-Coated Fe3O4 Granular System. Phys. Rev. B 2006, 73, 134412. [Google Scholar] [CrossRef]
- Inoue, J.; Maekawa, S. Theory of Tunneling Magnetoresistance in Granular Magnetic Films. Phys. Rev. B 1996, 53, R11927–R11929. [Google Scholar] [CrossRef]
- Ziese, M. Spin Hopping in a Discontinuous La0.7Ca0.3MnO3 Film. Appl. Phys. Lett. 2002, 80, 2144. [Google Scholar] [CrossRef]
- Serrate, D.; De Teresa, J.M.; Algarabel, P.A.; Ibarra, M.R.; Galibert, J. Intergrain Magnetoresistance up to 50 T in the Half-Metallic (Ba0.8Sr0.2)2FeMoO6 Double Perovskite: Spin-Glass Behavior of the Grain Boundary. Phys. Rev. B 2005, 71, 104409. [Google Scholar] [CrossRef]
- Burzo, E.; Balasz, I.; Valeanu, M.; Pop, I.G. The Effects of Thermal Treatment on the Physical Properties of Sr2FeMo1−xMxO6 Perovskite with M = W, Ta and x ≤ 0.3. J. Alloys Compd. 2011, 509, 105–113. [Google Scholar] [CrossRef]
- Burzo, E. Magnetic and Transport Properties of Double Perovskites. Stud. UBB Chem. 2021, LXVI, 63–72. [Google Scholar] [CrossRef]
- Morton, S.A.; Waddill, G.D.; Kim, S.; Ivan, K.; Schuller, S.A.; Chambers, J.G.T. Spin-Resolved Photoelectron Spectroscopy of Fe3O4. Surf. Sci. 2002, 513, L451–L457. [Google Scholar] [CrossRef]
- Poddar, P.; Fried, T.; Markovich, G. First-Order Metal-Insulator Transition and Spin-Polarized Tunneling in Fe3O4 Nanocrystals. Phys. Rev. B 2002, 65, 172405. [Google Scholar] [CrossRef]
- Taub, N.; Tsukernik, A.; Markovich, G. Inter-Particle Spin-Polarized Tunneling in Arrays of Magnetite Nanocrystals. J. Magn. Magn. Mater. 2009, 321, 1933–1938. [Google Scholar] [CrossRef]
- Kurahashi, M.; Sun, X. Observation of a Half-Metallic Interface State for Pyridine-Adsorbed H/Fe3O4 (100). J. Phys. Chem. Lett. 2021, 12, 8489–8494. [Google Scholar] [CrossRef]
Sample | Lattice Parameter (nm) | Mean Crystallite Size (nm) |
---|---|---|
Fe3O4 | 0.8334(2) | 17(1) |
CoFe2O4 (4) | 0.8379(1) | 14.2(2) |
Zn0.12Fe2.88O4 | 0.841(2) | 27(2) |
Zn0.18Fe2.82O4 | 0.842(3) | 15(1) |
Nanoparticles Pellet | T (K) | b (T−1/2) | c (T−1) | -P (%) | Reference |
---|---|---|---|---|---|
Fe3O4 d = 20 nm | 300 | 0.11 | 0.0027 | 13.4 | [50] |
Fe3O4 d = 8.9 nm | 300 | 0.115 | 0.0026 | 17.6 | [54] |
Fe3O4 d = 20 nm | 200 | 0.12 | 0.0045 | 24.2 | [50] |
Fe3O4 d = 8.9 nm | 200 | 0.12 | 0.00265 | 27 | [54] |
Fe3O4 d = 10(2) nm | 115 | 0.12 | 0.08 | 20.6 | [64] |
Fe3O4 d = 10(2) nm | 115 | 0.12 | 0.078 | 33.4 | [33] |
Fe3O4 d = 30 nm | 100 | 0.11 | 0.003 | 41.2 | [38] |
Fe3O4 amine monolayer d = 8 nm (sphere) | 300 | 0.10 | 0.055 | 36.5 | [46] |
Fe3O4 amine monolayer d = 8 nm, (octahedra) | 300 | 0.15 | 0.060 | 56 | [46] |
Fe3O4 d = 10.3 nm, polystyrene coated | 280 | 0.10 | 0.008 | 39.4 | [58] |
Fe3O4 d = 10(2) nm, oleic acid coated | 115 | 0.12 | 0.07 | 47.3 | [33] |
Fe3O4 d = 10–30 nm, polystyrene coated | 110 | 0.15 | 0.013 | 56.8 | [58] |
Fe3O4 three-dimensional array | 100 | 0.16 | 0.0024 | 38.5 | [51] |
Zn0.2Fe2.8O4 d = 30 nm | 110 | 0.17 | 0.0044 | 30.5 | [38] |
Sr2FeMo0.7W0.3O6, perovskite | 10 | 0.16 | 0.005 | 50 | [62] |
(Ba0.8 Sr0.2)2FeMoO6, perovskite | 200 | 0.20 | 0.0017 | 60 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burzo, E.; Tetean, R. New Insights on the Spin Glass Behavior in Ferrites Nanoparticles. Nanomaterials 2022, 12, 1782. https://doi.org/10.3390/nano12101782
Burzo E, Tetean R. New Insights on the Spin Glass Behavior in Ferrites Nanoparticles. Nanomaterials. 2022; 12(10):1782. https://doi.org/10.3390/nano12101782
Chicago/Turabian StyleBurzo, Emil, and Romulus Tetean. 2022. "New Insights on the Spin Glass Behavior in Ferrites Nanoparticles" Nanomaterials 12, no. 10: 1782. https://doi.org/10.3390/nano12101782
APA StyleBurzo, E., & Tetean, R. (2022). New Insights on the Spin Glass Behavior in Ferrites Nanoparticles. Nanomaterials, 12(10), 1782. https://doi.org/10.3390/nano12101782