Effects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of Lightly Cu-Doped ZnO
2.3. Characterizations
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Wang, N.; Wang, S.; Zhang, Y. Effect of doping 3d transition metal (Fe, Co, and Ni) on the electronic, magnetic and optical properties of pentagonal ZnO2 monolayer. Phys. E Low Dimens. Syst. Nanostructures 2020, 117, 113806. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Singh, R.K. Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 2019, 58, 17130–17163. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, Y.; Hu, Y.; Xie, H. Effect of cobalt doping on optical, magnetic and photocatalytic properties of ZnO nanoparticles. Optik 2020, 208, 164560. [Google Scholar] [CrossRef]
- More, D.; Phadnis, C.; Basu, S.; Pathak, A.; Dubenko, I.; Ali, N.; Jha, S.; Bhattachryya, D.; Mahamuni, S. Correlation of structural and magnetic properties of Ni-doped ZnO nanocrystals. J. Phys. D Appl. Phys. 2014, 47, 045308. [Google Scholar] [CrossRef]
- Kittilstved, K.R.; Norberg, N.S.; Gamelin, D.R. Chemical manipulation of high TC ferromagnetism in ZnO diluted magnetic semiconductors. Phys. Rev. Lett. 2005, 94, 147209. [Google Scholar] [CrossRef] [Green Version]
- Marquina, J.; Quintero, E.; Ruette, F.; Bentarcurt, Y. Theoretical study of Mn doping effects and O or Zn vacancies on the magnetic properties in wurtzite ZnO. Chin. J. Phys. 2020, 63, 63–69. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Iram, S.; Rafi, R.; Riaz, S.; Naseem, S. Effect of Cu doping on the structural, magnetic and optical properties of ZnO thin films. Appl. Phys. A 2018, 124, 468. [Google Scholar] [CrossRef]
- Malaidurai, M.; Santosh Kumar, B.; Thangavel, R. Spin polarized carrier injection driven magneto-optical Kerr effect in Cr-doped ZnO nanorods. Phys. Lett. A 2019, 383, 2988–2992. [Google Scholar] [CrossRef]
- Lardé, R.; Talbot, E.; Pareige, P.; Bieber, H.; Schmerber, G.; Colis, S.; Pierron-Bohnes, V.; Dinia, A. Evidence of superparamagnetic Co clusters in pulsed laser deposition-grown Zn0.9Co0.1O thin films using atom probe tomography. J. Am. Chem. Soc. 2011, 133, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Bang, J.; Kim, Y.-S.; Park, C.H.; Gao, F.; Zhang, S.B. Understanding the presence of vacancy clusters in ZnO from a kinetic perspective. Appl. Phys. Lett. 2014, 104, 252101. [Google Scholar] [CrossRef]
- Chiou, J.W.; Chang, S.Y.; Huang, W.H.; Chen, Y.T.; Hsu, C.W.; Hu, Y.M.; Chen, J.M.; Chen, C.H.; Kumar, K.; Guo, J.H. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy. Appl. Surf. Sci. 2011, 257, 4863–4866. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Z.; Li, Y.; Xia, B.; Shi, S.; Xue, D. Abnormal room temperature ferromagnetism in CuO-ZnO heterostructures: Interface related or not? Chem. Commun. 2015, 51, 1151–1153. [Google Scholar] [CrossRef] [PubMed]
- Heinhold, R.; Kim, H.-S.; Schmidt, F.; Von Wenckstern, H.; Grundmann, M.; Mendelsberg, R.J.; Reeves, R.J.; Durbin, S.M.; Allen, M.W. Optical and defect properties of hydrothermal ZnO with low lithium contamination. Appl. Phys. Lett. 2012, 101, 062105. [Google Scholar] [CrossRef]
- Altıntaş Yıldırım, Ö.; Durucan, C. Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization. Ceram. Int. 2016, 42, 3229–3238. [Google Scholar] [CrossRef]
- Verma, K.C.; Kotnala, R.K. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions. J. Solid State Chem. 2017, 246, 150–159. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wu, J.; Zhang, G.; Yan, Y. Oxygen vacancy assisted multiferroic property of Cu doped ZnO films. Phys. Chem. Chem. Phys. 2015, 17, 9098–9105. [Google Scholar] [CrossRef]
- Younas, M.; Xu, C.; Arshad, M.; Ho, L.P.; Zhou, S.; Azad, F.; Akhtar, M.J.; Su, S.; Azeem, W.; Ling, F.C.C. Reversible tuning of ferromagnetism and resistive switching in ZnO/Cu thin films. ACS Omega 2017, 2, 8810–8817. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.K.; Dutta, R.K.; Pandey, A.C. Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods. J. Magn. Magn. Mater. 2009, 321, 4001–4005. [Google Scholar] [CrossRef]
- Park, M.S.; Min, B.I. Ferromagnetism in ZnO codoped with transition metals: Zn1-x(FeCo)xO and Zn1-x(FeCu)xO. Phys. Rev. B 2003, 68, 224436. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, J.B.; Cheung, W.Y.; An, J.; Ke, N. Aggregation-based growth and magnetic properties of inhomogeneous Cu-doped ZnO nanocrystals. Appl. Phys. Lett. 2007, 90, 212502. [Google Scholar] [CrossRef]
- Hou, X.; Sun, H.; Liu, L.; Jia, X.; Liu, H. Unexpected large room-temperature ferromagnetism in porous Cu2O thin films. J. Magn. Magn. Mater. 2015, 382, 20–25. [Google Scholar] [CrossRef]
- Wei, M.; Braddon, N.; Zhi, D.; Midgley, P.A.; Chen, S.K.; Blamire, M.G.; MacManus-Driscoll, J.L. Room temperature ferromagnetism in bulk Mn-Doped Cu2O. Appl. Phys. Lett. 2005, 86, 072514. [Google Scholar] [CrossRef]
- Yu, C.; Mutlu, S.; Selvaganapathy, P.; Mastrangelo, C.H.; Svec, F.; Fréchet, J.M.J. Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal. Chem. 2003, 75, 1958–1961. [Google Scholar] [CrossRef] [PubMed]
- Standards, J.C.O.P.D. Powder Diffraction File (PDF); International Centre for Diffraction Data: Newton Square, PA, USA, 2004. [Google Scholar]
- Mohan, R.; Krishnamoorthy, K.; Kim, S.-J. Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Commun. 2012, 152, 375–380. [Google Scholar] [CrossRef]
- Ghosh, B.; Sardar, M.; Banerjee, S. Destruction of ferromagnetism in Cu-doped ZnO upon thermal annealing: Role of oxygen vacancy. J. Phys. D Appl. Phys. 2013, 46, 135001. [Google Scholar] [CrossRef]
- Xue, X.; Liu, L.; Wang, Z.; Wu, Y. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles. J. Appl. Phys. 2014, 115, 033902. [Google Scholar] [CrossRef]
- Seshadri, R. Zinc oxide-based diluted magnetic semiconductors. Curr. Opin. Solid State Mater. Sci. 2005, 9, 7. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, L.; He, H.; Zhang, L.; Ye, Z. Acceptor defect-participating magnetic exchange in ZnO:Cu nanocrystalline film: Defect structure evolution, Cu-N synergetic role and magnetic control. J. Mater. Chem. C 2015, 3, 1330–1346. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Hu, Z.; Tang, Z.; Tang, X. Effect of oxygen defects on ferromagnetic of undoped ZnO. J. Appl. Phys. 2011, 110, 013901. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Tang, Z. Effect of oxygen defects on ferromagnetism of Mn doped ZnO. J. Appl. Phys. 2013, 114, 123911. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1996, 68, 403–405. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, W.H.; Lee, C.-S.; Sun, K.W.; Suen, Y.W. Magnetophotoluminescence properties of Co-doped ZnO nanorods. Appl. Phys. Lett. 2009, 94, 151909. [Google Scholar] [CrossRef] [Green Version]
- Van Dijken, A.; Meulenkamp, E.A.; Vanmaekelbergh, D.; Meijerink, A. The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission. J. Lumin. 2000, 87–89, 454–456. [Google Scholar] [CrossRef]
- Tam, K.H.; Cheung, C.K.; Leung, Y.H.; Djurišić, A.B.; Ling, C.C.; Beling, C.D.; Fung, S.; Kwok, W.M.; Chan, W.K.; Phillips, D.L.; et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Tang, X.; Tang, Z.; Chu, F.; Zeng, T.; Tang, N. Role of oxygen defects in magnetic property of Cu doped ZnO. J. Alloy. Compd. 2014, 615, 740–744. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. (Eds.) Handbook of X-ray Photoelectron Spectroscopy; ULVAC-PHI: Chigasaki, Japan, 1992. [Google Scholar]
- Aljawfi, R.N.; Mollah, S. Properties of Co/Ni codoped ZnO based nanocrystalline DMS. J. Magn. Magn. Mater. 2011, 323, 3126–3132. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Yu, Y.H.; Pei, Z.L.; Bai, X.D.; Sun, C.; Huang, R.F.; Wen, L.S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- Koshy, O.; Khadar, M.A. Superparamagnetism in undoped ZnO nanorods. Appl. Surf. Sci. 2015, 346, 528–533. [Google Scholar] [CrossRef]
- Xu, D.H.; Shen, W.Z. Cu-doped ZnO hemispherical shell structures: Synthesis and room-temperature ferromagnetism properties. J. Phys. Chem. C 2012, 116, 13368–13373. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Gao, Y.-D.; Chen, Y.-S.; Hsueh, T.-J. Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance. ACS Appl. Mater. Interfaces 2014, 6, 4277–4285. [Google Scholar] [CrossRef]
- Chakraborti, D.; Narayan, J.; Prater, J.T. Room temperature ferromagnetism in Zn1−xCuxO thin films. Appl. Phys. Lett. 2007, 90, 062504. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179. [Google Scholar] [CrossRef]
- Herng, T.S.; Qi, D.C.; Berlijn, T.; Yi, J.B.; Yang, K.S.; Dai, Y.; Feng, Y.P.; Santoso, I.; Sánchez-Hanke, C.; Gao, X.Y.; et al. Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft X-ray magnetic circular dichroism. Phys. Rev. Lett. 2010, 105, 207201. [Google Scholar] [CrossRef] [Green Version]
- Feng, X. Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO. J. Phys. Condens. Matter 2004, 16, 4251. [Google Scholar] [CrossRef]
- Lee, E.-C.; Chang, K.J. Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys. Rev. B 2004, 69, 085205. [Google Scholar] [CrossRef]
- Yadav, H.K.; Sreenivas, K.; Gupta, V.; Katiyar, R.S. Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni-doped ZnO ceramics. J. Raman Spectrosc. 2009, 40, 381–386. [Google Scholar] [CrossRef]
- Lawes, G.; Risbud, A.S.; Ramirez, A.P.; Seshadri, R. Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B 2005, 71, 045201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-C.; Li, Y.-F.; Liu, Y.; Zhu, Y. Density-functional study on the ferromagnetism of (Mn, Na)-codoped ZnO. Phys. B Condens. Matter 2014, 451, 43–47. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xiao, W.; Tian, M.; Qin, N.; Shi, H.; Zhang, X.; Zha, W.; Tao, J.; Tian, J. Effects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals. Nanomaterials 2020, 10, 1578. https://doi.org/10.3390/nano10081578
Wang Z, Xiao W, Tian M, Qin N, Shi H, Zhang X, Zha W, Tao J, Tian J. Effects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals. Nanomaterials. 2020; 10(8):1578. https://doi.org/10.3390/nano10081578
Chicago/Turabian StyleWang, Zhi, Wenzhen Xiao, Mengmeng Tian, Neng Qin, Haidong Shi, Xiwei Zhang, Wenke Zha, Jiahua Tao, and Junlong Tian. 2020. "Effects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals" Nanomaterials 10, no. 8: 1578. https://doi.org/10.3390/nano10081578
APA StyleWang, Z., Xiao, W., Tian, M., Qin, N., Shi, H., Zhang, X., Zha, W., Tao, J., & Tian, J. (2020). Effects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals. Nanomaterials, 10(8), 1578. https://doi.org/10.3390/nano10081578