Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Information of R-QDs
3.2. Thin-Film Analysis for X2CO3:MZO ETLs
3.3. Device Performance and Operational Lifetime of Inverted R-QLEDs with X2CO3:MZO ETLs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colvin, V.; Schlamp, M.C.; Allvisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467. [Google Scholar] [CrossRef]
- Talapin, D.V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Jiang, C.; Bohnenberger, T.; Basché, T.; Mews, A. Electroluminescence from Isolated CdSe/ZnS Quantum Dots in Multilayered Light-emitting Diodes. J. Appl. Phys. 2004, 96, 3206–3210. [Google Scholar] [CrossRef]
- Dong, Y.; Caruge, J.-M.; Zhou, Z.; Hamilton, C.; Popovic, Z.; Ho, J.; Stenvenson, M.; Liu, G.; Bulovic, V.; Bawendi, M.; et al. Ultra-Bright, Highly Efficient, Low Roll-off Inverted Quantum-dot Light Emitting Devices (QLEDs). Dig. Tech. Pap. Soc. Inf. Disp. Int. Symp. 2015, 46, 270–273. [Google Scholar] [CrossRef]
- Song, J.; Wang, O.; Shen, H.; Ling, Q.; Li, Z.; Wang, L.; Zhang, X.; Li, L.S. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29, 1970226. [Google Scholar] [CrossRef]
- Lin, J.; Park, Y.-S.; Wu, K.; Yun, H.J.; Klimov, V.I. Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. Nano Lett. 2018, 18, 6645–6653. [Google Scholar]
- Shen, P.; Cao, F.; Wang, H.; Wei, B.; Wang, F.; Sun, X.W.; Tang, X. Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Appl. Mater. Interfaces 2019, 11, 1065–1070. [Google Scholar] [CrossRef]
- Kwak, J.; Bae, W.K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, J.; Yoon, D.Y.; Char, K.; et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12, 2362–2366. [Google Scholar] [CrossRef]
- Kathirgamanathan, P.; Kumaraverl, M.; Bramananthan, N.; Ravichandran, S. High Efficiency and Highly Saturated Red Emitting Inverted Quantum Dot Devices (QLEDs): Optimization of Their Efficiencies with Low Temperature Annealed Sol–gel Derived ZnO as the Electron Transporter and a Novel High Mobility Hole Transporter and Thermal Annealing of the Devices. J. Mater. Chem. C 2018, 6, 11622–11644. [Google Scholar]
- Wu, J.; Zhang, X.; Cia, J.; Lei, W.; Wang, B. Investigation on the Wetting Issues in Solution Processed Inverted Quantum Dot Light-Emitting Diodes. Org. Electron. 2018, 62, 434–440. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, B.; Wang, S.; Yuan, Q.; Zhang, H.; Kang, Z.; Wang, R.; Zhang, H.; Ji, W. Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 14894–14900. [Google Scholar] [CrossRef]
- Zhong, Z.; Zou, J.; Jiang, C.; Lan, L.; Song, C.; He, Z.; Mu, L.; Wang, L.; Wang, J.; Peng, J.; et al. Improved Color Purity and Efficiency of Blue Quantum Dot Light-Emitting Diodes. Org. Electron. 2018, 58, 245–249. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, W.; Kim, D.; Lee, W.; Chae, H. Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers. ACS Appl. Mater. Interfaces 2018, 10, 17295–17300. [Google Scholar] [CrossRef]
- Ding, K.; Fanh, Y.; Dong, S.; Chen, H.; Luo, B.; Jiang, K.; Gu, H.; Fan, L.; Liu, S.; Hu, B.; et al. 24.1% External Quantum Efficiency of Flexible Quantum Dot Light-Emitting Diodes by Light Extraction of Silver Nanowire Transparent Electrodes. Adv. Opt. Mater. 2018, 6, 1800347. [Google Scholar] [CrossRef]
- Li, Y.; Dai, X.; Chen, D.; Ye, Y.; Gao, Y.; Peng, X.; Jin, Y. Inverted Quantum Dot Light-Emitting Diodes with Conductive Interlayers of Zirconium Acetylacetonate. J. Mater. Chem. C 2019, 7, 3154–3159. [Google Scholar] [CrossRef]
- Liang, F.; Liu, Y.; Hu, Y.; Shi, Y.-L.; Liu, Y.-Q.; Wang, Z.-K.; Wang, X.-D.; Sun, B.-Q.; Liao, L.-S. Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2017, 9, 20239–20246. [Google Scholar] [CrossRef]
- Park, J.W.; Lim, J.T.; Oh, J.S.; Kim, S.H.; Viet, P.P.; Jhon, M.S.; Yeon, G.Y. Electron-injecting Properties of Rb2CO3-doped Alq3 Thin Films in Organic Light-emitting Diodes. J. Vac. Sci. Technol. A 2013, 31, 031101. [Google Scholar] [CrossRef]
- Chen, F.-C.; Wu, J.-L.; Yang, S.S.; Hsieh, K.-H.; Chen, W.-C. Cesium Carbonate as a Functional Interlayer for Polymer Photovoltaic Devices. J. Appl. Phys. 2008, 103, 103721. [Google Scholar] [CrossRef]
- Lim, J.T.; Park, J.W.; Kwon, J.W.; Yeom, G.Y.; Lhm, K.; Lee, K.J. Optoelectronic Characteristics of Organic Light-Emitting Diodes with a Rb2CO3-Mixed C60 Layer as an Electron Ohmic-Contact. J. Electrochem. Soc. 2013, 160, G1–G5. [Google Scholar] [CrossRef]
- Triana, M.A.; Chen, H.; Zhang, D.; Camargo, R.J.; Zhai, T.; Duhm, S.; Dong, Y. Bright Inverted Quantum-dot Light-emitting Diodes by All-solution Processing. J. Mater. Chem. C 2018, 6, 7487–7492. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Z.; Yang, Y. Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Adv. Funct. Mater. 2007, 17, 1966–1973. [Google Scholar] [CrossRef]
- Park, Y.; Noh, S.; Lee, D.; Kim, J.; Lee, C. Study of the Cesium Carbonate (Cs2CO3) Inter Layer Fabricated by Solution Process on P3HT:PCBM Solar Cells. Mol. Cryst. Liq. Cryst. 2011, 538, 20–27. [Google Scholar] [CrossRef]
- Chang, C.-H.; Hsu, M.-K.; Wu, S.-W.; Chen, M.-H.; Lin, H.-H.; Li, C.-S.; Pi, T.-W.; Chang, H.-H.; Chen, N.-P. Using Lithium Carbonate-based Electron Injection Structures in High-Performance Inverted Organic Light-Emitting Diodes. Phys. Chem. Chem. Phys. 2015, 17, 13123–13128. [Google Scholar] [CrossRef]
- Azmi, R.; Seo, G.; Ahn, T.K.; Jang, S.-Y. High-Efficiency Air-Stable Colloidal Quantum Dot Solar Cells Based on Potassium Doped ZnO Electron Accepting Layer. ACS Appl. Mater. Interfaces 2018, 10, 35244–35249. [Google Scholar] [CrossRef]
- Savva, A.; Choulis, S.A. Cesium-doped Zinc Oxide as Electron Selective Contact in Inverted Organic Photovoltaics. Appl. Phys. Lett. 2013, 102, 233301. [Google Scholar] [CrossRef]
- Pan, J.; Wei, C.; Wang, L.; Zhuang, J.; Huang, Q.; Su, W.; Cui, Z.; Nathan, A.; Lei, W.; Chen, J. Boosting the Efficiency of Inverted Quantum-dot Light-emitting Diodes by Balancing Charge Densities and Suppressing Exciton Quenching through Band Alignment. Nanoscale 2018, 10, 592–602. [Google Scholar] [CrossRef]
- Chen, G.; Liu, F.; Ling, Z.; Zhang, P.; Wei, B.; Zhu, W. Efficient Organic Light Emitting Diodes Using Solution-Processed Alkali Metal Carbonate Doped ZnO as Electron Injection Layer. Front. Chem. 2019, 7, 226. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, H.; Yoon, Y.J.; Walker, B.; Song, S.; Heo, J.; Park, S.Y.; Kim, J.W.; Kim, G.-H.; Kim, J.Y. Formamidinium-based Planar Heterojunction Perovskite Solar Cells with Alkali Carbonate-doped Zinc Oxide Layer. RSC Adv. 2018, 8, 24110–24115. [Google Scholar] [CrossRef]
- Kim, H.-M.; Yusoff, A.R.M.; Youn, J.-H.; Jang, J. Inverted Quantum-dot Light Emitting Diodes with Cesium Carbonate doped Aluminium-Zinc-Oxide as the Cathode Buffer Layer for High Brightness. J. Mater. Chem. C 2013, 1, 3924–3930. [Google Scholar] [CrossRef]
- Kim, H.-M.; Cho, S.; Kim, J.; Shin, H.; Jang, J. Li and Mg Co-Doped Zinc Oxide Electron Transporting Layer for Highly Efficient Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 24028–24036. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, H.-M.; Kim, J.; Jang, J. Remarkable Lifetime Improvement of Quantum-dot Light Emitting Diodes by Incorporating Rubidium Carbonate in Metal-Oxide Electron Transport Layer. J. Mater. Chem. C 2019, 7, 10082–10091. [Google Scholar] [CrossRef]
- Moyen, E.; Jun, H.; Kim, H.-M.; Jang, J. Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 42647–42656. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Kim, J.; Cho, S.; Jang, J. Solution-Processed Metal-Oxide p−n Charge Generation Junction for High-Performance Inverted Quantum-Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2017, 9, 38678–38686. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Youn, J.-H.; Seo, G.-J.; Jang, J. Inverted Quantum-Dot Light-Emitting Diodes with Solution-Processed Aluminium–Zinc Oxide as a Cathode Buffer. J. Mater. Chem. C 2013, 1, 1567–1573. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.-M.; Jang, J. Low Work Function 2.81 eV Rb2CO3-Doped Polyethylenimine Ethoxylated for Inverted Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 18993–19001. [Google Scholar] [CrossRef] [PubMed]
- Andre, L.; Abanades, S. Investigation of Metal Oxides, Mixed Oxides, Perovskites and Alkalineearth Carbonates/Hydroxides as Suitable Candidate Materials for High-Temperature Thermochemical Energy Storage using Reversible Solid-Gas Reactions. Mater. Today Energy 2018, 10, 48–61. [Google Scholar] [CrossRef]
- The LibreTexts Libraries. Available online: https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/ (accessed on 2 December 2020).
- The Chemguide. Available online: https://www.chemguide.co.uk/inorganic/group1/ (accessed on 2 December 2020).
- Zhang, H.; Wang, F.; Kuang, Y.; Li, Z.; Lin, Q.; Shen, H.; Wang, H.; Guo, L.; Li, L.S. Se/S Ratio-Dependent Properties and Application of Gradient-Alloyed CdSe1−xSx Quantum Dots: Shell-free Structure, Non-blinking Photoluminescence with Single-Exponential Decay, and Efficient QLEDs. ACS Appl. Mater. Interfaces 2019, 11, 6238–6247. [Google Scholar] [CrossRef]
- Chen, S.; Cao, W.; Liu, T.; Tsang, S.-W.; Yang, Y.; Yan, X.; Qian, L. On the Degradation Mechanisms of Quantum-dot Light-emitting Diode. Nat. Commun. 2019, 10, 765. [Google Scholar] [CrossRef]
- Jiang, C.; Tang, R.; Wang, X.; Ju, H.; Chen, G.; Chen, T. Akali Metals Doping for High-Performance Planar Heterojunction Sb2S3 Solar Cells. Sol. RRL 2019, 3, 1800272. [Google Scholar] [CrossRef]
- Kirkwood, N.; Singh, B.; Mulvaney, P. Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer. Adv. Mater. Interfaces 2016, 3, 1600868. [Google Scholar] [CrossRef]
ETLs | Pristine MZO | Alkali Metal Carbonate Dopant in MZO | ||||
---|---|---|---|---|---|---|
Cs2CO3 | Rb2CO3 | K2CO3 | Na2CO3 | Li2CO3 | ||
CB (eV) | 2.80 | 2.05 | 2.09 | 2.29 | 2.09 | 1.46 |
WF (eV) | 3.10 | 2.08 | 2.28 | 2.57 | 2.61 | 2.57 |
CB-WF (eV) | 0.30 | 0.03 | 0.19 | 0.28 | 0.52 | 1.11 |
VB (eV) | 6.47 | 5.45 | 5.61 | 5.78 | 5.70 | 5.07 |
Eg (eV) | 3.67 | 3.40 | 3.52 | 3.49 | 3.61 | 3.61 |
Exciton Decay Time | QD Underlayer | |||||
---|---|---|---|---|---|---|
Glass | Alkali Metal Carbonate Blended MZO | |||||
Li2CO3 | Na2CO3 | K2CO3 | Rb2CO3 | Cs2CO3 | ||
τ1 (ns) | 13.9 | 13.0 | 12.9 | 11.0 | 11.8 | 14.0 |
A1 (%) | 76.8 | 73.2 | 70.8 | 57.9 | 64.9 | 73.8 |
τ2 (ns) | 30.7 | 26.0 | 23.9 | 21.1 | 22.1 | 28.3 |
A2 (%) | 23.2 | 26.8 | 29.2 | 42.1 | 35.1 | 26.2 |
τavr (ns) | 20.6 | 18.5 | 17.7 | 16.8 | 17.0 | 20.0 |
Roughness | MZO | Alkali Metal Carbonate Blended MZO | ||||
---|---|---|---|---|---|---|
Li2CO3 | Na2CO3 | K2CO3 | Rb2CO3 | Cs2CO3 | ||
Rpv (nm) | 13.8 | 17.8 | 18.5 | 37 | 55.7 | 13.4 |
Rq (nm) | 2.5 | 2.5 | 1.8 | 1.9 | 3.0 | 1.5 |
Ra (nm) | 1.7 | 2.0 | 1.5 | 1.5 | 1.9 | 1.2 |
Thin-Films | Pristine MZO | Alkali Metal Carbonate Blended MZO | ||||
---|---|---|---|---|---|---|
Cs2CO3 | Rb2CO3 | K2CO3 | Na2CO3 | Li2CO3 | ||
σ (×10−7 S/cm) | 0.7 | 15.7 | 4.3 | 3.0 | 1.2 | 0.3 |
ETLs | VT (1) (V) | VD (1) (V) | CEmax | PEmax | Lmax | EQEmax | @ 1k cd/m2 | @ 10k cd/m2 | @ 1k cd/m2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(cd/A) | (lm/W) | (cd/m2) | (%) | CE (cd/A) | PE (lm/W) | CE (cd/A) | PE (lm/W) | T95 (h) | |||
MZO | 2.8 | 5.3 | 9.3 | 8.5 | <30k | 7.2 | 6.4 | 3.7 | 3.4 | 1.3 | 0.06 |
Li2CO3:MZO | 2.5 | 5.9 | 9.9 | 9.4 | <20k | 7.4 | 7.6 | 4.0 | 2.8 | 0.9 | 0.03 |
Na2CO3:MZO | 2.0 | 3.4 | 16.3 | 20.5 | <70k | 13.2 | 16.0 | 14.6 | 11.4 | 6.6 | 0.2 |
K2CO3:MZO | 2.2 | 3.3 | 13.0 | 11.2 | >150k | 11.5 | 11.3 | 10.7 | 12.9 | 8.6 | 94 |
Rb2CO3:MZO | 2.4 | 3.7 | 12.2 | 8.3 | >150k | 9.6 | 9.6 | 8.2 | 11.0 | 6.7 | 620 |
Cs2CO3:MZO | 2.5 | 4.0 | 11.0 | 5.2 | >150k | 8.1 | 6.4 | 5.0 | 8.1 | 4.2 | 407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-M.; Jeong, W.; Kim, J.H.; Jang, J. Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer. Nanomaterials 2020, 10, 2423. https://doi.org/10.3390/nano10122423
Kim H-M, Jeong W, Kim JH, Jang J. Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer. Nanomaterials. 2020; 10(12):2423. https://doi.org/10.3390/nano10122423
Chicago/Turabian StyleKim, Hyo-Min, Wonkyeong Jeong, Joo Hyun Kim, and Jin Jang. 2020. "Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer" Nanomaterials 10, no. 12: 2423. https://doi.org/10.3390/nano10122423
APA StyleKim, H.-M., Jeong, W., Kim, J. H., & Jang, J. (2020). Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer. Nanomaterials, 10(12), 2423. https://doi.org/10.3390/nano10122423