Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Ceramics
2.2. Viscosity Measurements
2.3. Loading Experiments
Loading Method | Penetration Depth (mm) | Loading of the Ceramics (%) |
---|---|---|
immersion | 0.34 ± 0.07 | 28 |
vacuum | 1.82 ± 0.36 | 82 |
directional flow | 3.50 | 100 |
Concentration (%w/v) | Loading Time (min) | ||||
---|---|---|---|---|---|
500 mbar | 250 mbar | 100 mbar | 50 mbar | 5 mbar | |
1 | 42.8 ± 19.0 | 28.3 ± 16.5 | 12.1 ± 3,8 | 5.4 ± 0.3 | * |
2.5 | 112.6 ± 14.5 | 47.0 ± 12.1 | 25.3 ± 10.5 | 10.0 ± 3.1 | * |
5 | >120 | >120 | >120 | >120 | * |
2.4. Live-Dead Assays
3. Experimental Section
3.1. Preparation and Characterization of the Ceramics
3.2. Preparation of the Alginate Solutions
3.3. Loading of the Ceramics
3.4. Testing of the Biocompatibility of the Ceramic/Gel Composites
3.5. Statistics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farraro, K.F.; Kim, K.E.; Woo, S.L.Y.; Flowers, J.R.; McCullough, M.B. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 2014, 47, 1979–1986. [Google Scholar] [CrossRef] [PubMed]
- Sih, G.C.; Connelly, G.M.; Berman, A.T. The effect of thickness and pressure on the curing of PMMA bone cement for the total hip joint replacement. J. Biomech. 1980, 13, 347–352. [Google Scholar] [CrossRef]
- Butler, D.L.; Goldstein, S.A.; Guilak, F. Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 2000, 122, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Cameron, H.U.; Macnab, I.; Pilliar, R.M. Evaluation of a biodegradable ceramic. J. Biomed. Mater. Res. 1977, 11, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V.; Epple, M. Die biologische und medizinische bedeutung von calciumphosphaten. Angew. Chem. 2002, 114, 3260–3277. [Google Scholar] [CrossRef]
- Barrère, F.; van Blitterswijk, C.A.; de Groot, K. Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 2006, 1, 317–332. [Google Scholar]
- Stevenson, S. Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin. Orthop. Relat. Res. 1998, 355, S239–S246. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.J.; Schlag, G.; Schwarz, N.; Mollan, R.A.B.; Nolan, P.C.; Wilson, D.J. Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 1994, 15, 601–608. [Google Scholar] [CrossRef]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31 4, S37–S47. [Google Scholar] [CrossRef]
- Horch, H.H.; Sader, R.; Pautke, C.; Neff, A.; Deppe, H.; Kolk, A. Synthetic, pure-phase β-tricalcium phosphate ceramic granules (cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 2006, 35, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Controlled Release 2006, 113, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ginebra, M.-P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090–1110. [Google Scholar] [CrossRef] [PubMed]
- Hiorth, M.; Skøien, T.; Sande, S.A. Immersion coating of pellet cores consisting of chitosan and calcium intended for colon drug delivery. Eur. J. Pharm. Biopharm. 2010, 75, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Seidenstuecker, M.; Mrestani, Y.; Neubert, R.H.H.; Bernstein, A.; Mayr, H.O. Release kinetics and antibacterial efficacy of microporous β-TCP coatings. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Laurent, F.; Bignon, A.; Goldnadel, J.; Chevalier, J.; Fantozzi, G.; Viguier, E.; Roger, T.; Boivin, G.; Hartmann, D. A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: In vitro release validation. J. Mater. Sci. Mater. Med. 2008, 19, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Epple, M. Biomaterialien und Biomineralisation; Teubner Verlag: Wiesbaden, Germany, 2003. [Google Scholar]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Okada, H.; Takemura, G.; Esaki, M.; Kobayashi, H.; Kanamori, H.; Kawamura, I.; Maruyama, R.; Fujiwara, T.; Fujiwara, H.; et al. Sustained release of erythropoietin using biodegradable gelatin hydrogel microspheres persistently improves lower leg ischemia. J. Am. Coll Cardiol. 2009, 53, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Jinno, D.; Liu, D.; Isobe, T.; Kofuji, K.; Kawashima, S. The drug release profile from calcium-induced alginate gel beads coated with an alginate hydrolysate. Molecules 2007, 12, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Jeon, O.; Kang, S.-W.; Lim, H.-W.; Chung, J.H.; Kim, B.-S. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(l-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006, 27, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Habraken, W.J.; Boerman, O.C.; Wolke, J.G.; Mikos, A.G.; Jansen, J.A. Release of growth factors from gelatin microsphere/CaP composites. Key Eng. Mater. 2008, 361–363, 527–530. [Google Scholar] [CrossRef]
- Song, J.; Xu, J.; Filion, T.; Saiz, E.; Tomsia, A.P.; Lian, J.B.; Stein, G.S.; Ayers, D.C.; Bertozzi, C.R. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J. Biomed. Mater. Res. A 2009, 89, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Itokazu, M.; Sugiyama, T.; Ohno, T.; Wada, E.; Katagiri, Y. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J. Biomed. Mater. Res. 1998, 39, 536–538. [Google Scholar] [CrossRef]
- LeRoux, M.A.; Guilak, F.; Setton, L.A. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 1999, 47, 46–53. [Google Scholar] [CrossRef]
- Haug, A.; Smidsrod, O. Determination of intrinsic viscosity of alginates. Acta Chem. Scand. 1962, 16, 1569–1578. [Google Scholar] [CrossRef]
- Stahli, C.; Bohner, M.; Bashoor-Zadeh, M.; Doebelin, N.; Baroud, G. Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomater. 2010, 6, 2760–2772. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.; Nobel, D.; Mayr, H.O.; Berger, G.; Gildenhaar, R.; Brandt, J. Histological and histomorphometric investigations on bone integration of rapidly resorbable calcium phosphate ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Dietrich, M.; Fraedrich, F.; Hube, R.; Nerlich, A.; von Eisenhart-Rothe, R.; Hein, W.; Bernstein, A. Microporous pure β-tricalcium phosphate implants for press-fit fixation of anterior cruciate ligament grafts: Strength and healing in a sheep model. Arthroscopy 2009, 25, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- PromoKine. Live/Dead Cell Staining Kit II—Instruction Manual; PromoCell GmbH: Heidelberg, Germany, 2015. [Google Scholar]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidenstuecker, M.; Kissling, S.; Ruehe, J.; Suedkamp, N.P.; Mayr, H.O.; Bernstein, A. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. J. Funct. Biomater. 2015, 6, 1085-1098. https://doi.org/10.3390/jfb6041085
Seidenstuecker M, Kissling S, Ruehe J, Suedkamp NP, Mayr HO, Bernstein A. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. Journal of Functional Biomaterials. 2015; 6(4):1085-1098. https://doi.org/10.3390/jfb6041085
Chicago/Turabian StyleSeidenstuecker, Michael, Steffen Kissling, Juergen Ruehe, Norbert P. Suedkamp, Hermann O. Mayr, and Anke Bernstein. 2015. "Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow" Journal of Functional Biomaterials 6, no. 4: 1085-1098. https://doi.org/10.3390/jfb6041085
APA StyleSeidenstuecker, M., Kissling, S., Ruehe, J., Suedkamp, N. P., Mayr, H. O., & Bernstein, A. (2015). Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. Journal of Functional Biomaterials, 6(4), 1085-1098. https://doi.org/10.3390/jfb6041085