IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Characterization of Prepared Gels (Gel 1–Gel 4)
2.2. Studies of Equilibrium Swelling in Chitosan Gels (Gel 1–4)
2.3. Bond Strength Testing
2.4. Free Radical Defence Capability of the Prepared Hydrogels
2.5. Bio-Adhesion in Vitro Model
Hydrogel | Adhesive Force (N) ± SD (Skin) | Adhesive Force (N) ± SD (Dentin) | Work of Adhesion (N·cm) ± SD (Skin) | Work of Adhesion (N·cm) ± SD (Dentin) |
---|---|---|---|---|
Gel 1 | 1.450 ± 0.30 | 1.71 ± 0.35 | 4.35 ± 0.48 | 5.92 ± 0.34 |
Gel 2 | 1.02 ± 0.27 | 1.17 ± 0.44 | 2.19 ± 0.52 | 2.49 ± 0.42 |
Gel 3 | 1.01 ± 0.30 | 1.12 ± 0.60 | 2.85 ± 0.41 | 2.94 ± 0.29 |
Gel 4 | 1.67 ± 0.30 | 1.81 ± 0.35 | 5.15 ± 0.48 | 6.12 ± 0.34 |
2.6. The Presented Values Are an Average of 5 (n = 5)
3. Discussion
Drug Release Studies in Vitro, Propolis, β-Carotene and Resveratrol as Poorly Water Soluble Prototypes in Chitosan/Vit/CD/Propolis Hydrogel
4. Experimental Section
4.1. Methods
4.2. Preparation of Hydrogels Containing Various Antibiotics
Gel Formulation | Gel Number | Chitosan /Vitamin C (5:1) (w/w%) | Antioxidant | β-Cyclodextrin (w/w%) | pH |
---|---|---|---|---|---|
Ch/Vit C/CD | Gel 1 | 5 | 0 | 5 | 6.12 |
Ch/Vit C/CD/β-carotene | Gel 2 | 5 | 1 | 5 | 5.98 |
Ch/Vit C/CD/resveratrol | Gel 3 | 5 | 1 | 5 | 6.24 |
Ch/Vit C/CD/propolis | Gel 4 | 5 | 1 | 5 | 6.13 |
4.3. Determination of Gel pH
4.4. Bio-Adhesive Investigation
4.5. Morphology of the Gels
4.6. Gel Stability
4.7. Shear Bond Strength Tests for Dentin Bonding
Samples | Shear Bond Strength Testing Conditions |
---|---|
Group A | 37% of phosphoric acid + primer + bonding immediately (negative control) |
Group B | Self-etching primer + bonding immediately (positive control) |
Group C | Gel 1 + bonding immediately |
Group D | Gel 2 + bonding immediately |
Group E | Gel 3 + bonding immediately |
Group F | Gel 4 + bonding immediately |
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Elsner, J.J.; Egozi, D.; Ullmann, Y.; Berdicevsky, I.; Shefy-Peleg, A.; Zilberman, M. Novel biodegradable composite wound dressings with controlled release of antibiotics: Results in a guinea pig burn model. Burns 2011, 37, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.D.; Lee, J.O.; Herndon, D.N. Current pharmacotherapy for the treatment of severe burns. Expert Opin. Pharmacother. 2003, 4, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Goossens, A.; Cleenewerck, M.B. New wound dressings: Classification, tolerance. Eur. J. Dermatol. 2010, 20, 24–26. [Google Scholar] [PubMed]
- Alsarra, I.A. Chitosan topical gel formulation in the management of burn wounds. Int. J. Biol. Macromol. 2009, 45, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Van Steenberghe, D.; Bercy, P.; Kohl, J.; De Boever, J.; Adriaens, P.; Vanderfaeillie, A.; Adriaenssen, C.; Rompen, E.; De Vree, H.; McCarthy, E.F. Subgingival minocycline hydrochloride ointment in moderate to severe chronic adult periodontitis: A randomized, doubleblind, vehicle-controlled, multicenter study. J. Periodontol. 1993, 64, 637–644. [Google Scholar]
- Hurler, J.; Engesland, A.; Kermany, B.P.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness and hardness. J. Appl. Polym. Sci. 2011, 125, 180–188. [Google Scholar]
- Engesland, A. Hydrogels of natural origin in wound healing: Formulation development. Master Thesis, University of Tromsø, Tromsø, Norway, 2010. [Google Scholar]
- Garrett, S.; Johnson, L.; Drisko, C.H.; Adams, D.F.; Bandt, C.; Beiswanger, B.; Bogle, G.; Donly, K.; Hallmon, W.W.; Hancock, E.B.; et al. Two multi-center studies evaluating locally delivered doxycycline hyclate, placebo control, oral hygiene, and scaling and root planing in the treatment of periodontitis. J. Periodontol. 1999, 70, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.; Cugini, M.A.; Goodson, J.M. Zero-order delivery with periodontal placement of tetracycline-loaded ethylene vinyl acetate fibers. J. Periodont. Res. 1990, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, G. Effects of subgingival irrigation on periodontal status. J. Periodontol. 1987, 58, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Rethman, M.; Greenstein, G. Oral irrigation in the treatment of periodontal diseases. Curr. Opin. Periodontol. 1994, 99–110. [Google Scholar]
- Khor, E.; Lim, L.Y. Implantable applications of chitin and chitosan. Biomaterials 2003, 24, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Keegan, G.; Smart, J.; Ingram, M.; Barnes, L.; Rees, G.; Burnett, G. An in vitro assessment of bioadhesive zinc/carbomer complexes for antimicrobial therapy within the oral cavity. Int. J. Pharm. 2007, 340, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Dornish, M.; Kaplan, D.; Skaugrud, Ø. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. Ann. N. Y. Acad. Sci. 2001, 944, 388–397. [Google Scholar]
- Heal, C.F.; Buettner, P.G.; Cruickshank, R.; Graham, D.; Browning, S.; Pendergast, J.; Drobetz, H.; Gluer, R.; Lisec, C. Does single application of topical chloramphenicol to high risk sutured wounds reduce incidence of wound infection after minor surgery? Prospective randomised placebo controlled double blind trial. BMJ 2009, 338. [Google Scholar] [CrossRef] [PubMed]
- Risbud, M.V.; Bhonde, R.R. Polyacrylamidechitosan hydrogels: In vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 2000, 7, 69–75. [Google Scholar] [PubMed]
- Chow, K.S.; Khor, E. Novel fabrication of open-pore chitin matrixes. Biomacromolecules 2000, 1, 61–67. [Google Scholar] [PubMed]
- Senel, S.; Ikinci, G.; Kas, S.; Yousefi-Rad, A.; Sargon, M.F.; Hincal, A.A. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 2000, 193, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Needleman, I.G.; Smales, F.C.; Martin, G.P. An investigation of bioadhesion for periodontal and oral mucosal drug delivery. J. Clin. Periodontol. 1997, 24, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Perchyonok, V.T.; Zhang, S.; Grobler, S.R.; Oberholzer, T.G.; Massey, W. Insights into and relative effect of chitosan-krill oil, chitosan-H-aspirin, chitosan-H-krill oil-nystatin and chitosan-H-krill oil-aspirin-nystatin on dentin bond strength and functional drug delivery capacity: In-vitro studies. Eur. J. Gen. Dent. 2014, 3, 57–65. [Google Scholar] [CrossRef]
- Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef] [PubMed]
- Tamara, P.V.; Vanessa, R.; Zhang, S.; Grobler, S.R.; Oberholzer, T.G.; Massey, W. Insights and relative effect of aspirin, naproxen and ibuprofen containing hydrogels: From design to performance as a functional dual capacity restorative material and build in free radical defense: In vitro studies. Open J. Stomatol. 2014, 4, 73–83. [Google Scholar] [CrossRef]
- Chung, T.W.; Lu, Y.F.; Wang, S.S.; Lin, Y.S.; Chu, S.H. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials 2002, 23, 4803–4809. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef] [PubMed]
- Brandl, F.; Kastner, F.; Gschwind, R.M.; Blunk, T.; Tessmar, J.; Gopferich, A. Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. J. Control. Release 2010, 142, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.B.; Leite, H.F.; Yoshida, M.I.; Saliba, J.B.; Junior, A.S.C.; Faraco, A.A.G. In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm. 2009, 368, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Rate of release of medicaments from ointments bases containing drugs in suspensions. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Uysal, T.; Akkurt, M.D.; Amasyali, M.; Ozcan, S.; Yagci, A.; Basak, F.; Sagdic, D. Does a chitosan containing dentifrice prevent demineralization around orthodontic brackets? Angle Orthod. 2011, 81, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.F.; Jourdian, G.W.; MacCallum, D.K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res. 1989, 19, 277–297. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Perchyonok, V.T.; Grobler, S.R.; Zhang, S. IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release. J. Funct. Biomater. 2014, 5, 183-196. https://doi.org/10.3390/jfb5030183
Perchyonok VT, Grobler SR, Zhang S. IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release. Journal of Functional Biomaterials. 2014; 5(3):183-196. https://doi.org/10.3390/jfb5030183
Chicago/Turabian StylePerchyonok, V. Tamara, Sias R. Grobler, and Shengmiao Zhang. 2014. "IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release" Journal of Functional Biomaterials 5, no. 3: 183-196. https://doi.org/10.3390/jfb5030183
APA StylePerchyonok, V. T., Grobler, S. R., & Zhang, S. (2014). IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release. Journal of Functional Biomaterials, 5(3), 183-196. https://doi.org/10.3390/jfb5030183