Abstract
Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.
1. Introduction
An important study of mathematical models described by differential equations concerns construction of the inherent conservation laws of equations. This is because of the many uses of conservation laws, which include characterisation of the conserved physical quantities of the phenomenon being modelled. In some cases, conservation laws are used to investigate integrability, existence, uniqueness, and stability of solutions of differential equations. In the case of partial differential equations (PDEs), conservation laws can also be used to search for potential symmetries, which in turn lead to new solutions of the equations via admitted nonlocal symmetries. Therefore, construction of conservation laws of the Black-Scholes equation [1], arguably the most famous equation in financial mathematics, represents an important aspect of the study of the Black-Scholes market.
A number of methods have been developed for constructing conservation laws of PDEs [2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Lie symmetry analysis [16,17,18,19,20,21,22] is central to some of the routines used in these methods, in particular to those that have been applied on the Black-Scholes equation before. Edelstein and Govinder [23], in the process of finding potential symmetries of the Black-Scholes equation, use the approach of Kara and Mahomed [10] to find conservation laws of the equation via the admitted Lie point symmetries. Hashemi [24] also uses Lie point symmetries of the Black-Scholes equation to compute conservation laws of the equation via Ibragimov’s new conservation theorem [4,14].
In this paper, we augment the work by Edelstein and Govinder [23] and Hashemi [24]. We use two methods to construct general formulas for finding conservation laws of the Black-Scholes equation. In the first method, we employ the general conservation theorem by Ibragimov [4,14] by means of which conservation laws for a system of equations consisting of the given system and its adjoint are obtained. The second method used is the direct method proposed by Anco and Bluman in 1996 [3,5]. This method essentially reduces the construction of conservation laws to solving a system of linear determining equations similar to that for finding Lie point symmetries. An explicit formula is then derived which yields a conservation law for each solution of the determining system. Using this method we characterise conservation laws of the Black-Scholes equation in terms of solutions of the associated adjoint equation. Furthermore, we construct a mapping between the Black-Scholes equation and the associated adjoint equation so that every solution of the Black-Scholes equation yields a conservation law of the equation. Mathematica [25] is used to perform all the calculations reported in this paper.
In its simplest form, the Black-Scholes equation is a linear parabolic equation,
where is the fair option price depending on the current value of the underlying asset x and time t. The parameters and r are the market volatility of the underlying asset price and the interest rate, respectively.
The paper is organised as follows. In Section 2, we present relevant preliminaries. In Section 3, we exploit nonlinear self-adjointness of the Black-Scholes equation to derive a general formula for constructing conservation laws of the quation. In Section 4, we derive a general formula for constructing conservation laws of the Black-Scholes via the direct method. We provide illustrative examples in Section 5. An equivalence transformation between the Black-Scholes equation and its adjoint equation is derived in Section 6. Finally, we give concluding remarks in Section 7.
2. Preliminaries
Consider a system of m PDEs of r-th order
where is an independent variable set and is a dependent variable set, with denoting all i-th x derivatives of u. The summation convention for repeated indices is assumed unless otherwise stated. The formal Lagrangian, introduced in [4], associated to the system of Equations (2), is given by the expression
where are new dependent variables, . The system of adjoint equations to (2) is defined by
where is the Euler operator
and is the total derivative operator with respect to defined by
Definition 1.
We are now able to obtain the explicit formulas for conservation laws of any nonlinearly self-adjoint Equation (2) that admits symmetries. We shall, however, omit a discussion of Lie symmetry analysis as this is well-documented in many standard books [16,17,18,19,20,21,22].
Theorem 1.
An alternate method for constructing conservation laws, that circumvents Noether’s theorem is the direct/multiplier method [5]. In this method we exploit the fact that every admitted nontrivial conservation law arises from multipliers on the Equation (2). Multipliers for the PDE system (2) are a set of functions satisfying.
where (11) holds identically for arbitrary function . It follows therefore that the conservation law holds for all solutions of the system of PDEs (2).
Theorem 2.
A set of multipliers yields a conservation law of the given system of differential Equations (2) if and only if the equations
hold for arbitrary functions
3. Conservation Laws of the Black-Scholes Equation via Nonlinear Self-Adjointness
The Black-Scholes equation admits Lie point symmetries [26] and, being a linear equation, is nonlinearly self-adjoint [15]. The equation is therefore amenable to Ibragimov’s method for constructing conservation laws. Every symmetry of the Black-Scholes equation gives rise to a conservation law of the equation. We follow the theory outlined in Section 2 to construct the adjoint equation of the Black-Scholes Equation (1). According to (3) the formal Lagrangian for the Equation (1) is
from which we derive the adjoint equation of the Black-Scholes equation as defined in (4):
where
The Black-Scholes equation, being a linear equation, is nonlinearly self-adjoint [15]. The trivial substitution
where is any solution of the adjoint Equation (14) obviously solves the adjoint equation for any solution of the Black-Scholes equation. According to Theorem 1 this leads to the following result:
Proposition 1.
Every infinitesimal symmetry generator
of the Black-Scholes equation gives rise to a conservation law,
where
with
and v is any solution of the adjoint Equation (14).
4. Conservation Laws of the Black-Scholes Equation via the Direct Method
We will exploit the well-known fact that for any linear PDE system, each solution of its adjoint system yields a conservation law of the system [21]. According to (12) a multiplier of a conservation law of the Black-Scholes equation satisfies the equation
If we take to be a first-order differential function , it is easy to show that is a multiplier of the Black-Scholes Equation (1) if and only if
where v is any solution of the adjoint Equation (14). This is arrived at by expanding Equation (19) and solving the resulting set of determining equations for the multiplier.
Furthermore, it is not hard to show that if is a solution of the adjoint Equation (14), then
where and are any functions satisfying
The leads to the following result:
Proposition 2.
The tuple , where
is a conserved vector of the Black-Scholes equation provided that v is a solution of the adjoint Equation (14).
Therefore, any solution of the adjoint Equation (14) leads to a conservation law of the Black-Scholes equations.
5. Illustrative Examples
In this section we provide examples of conservation laws of the Black-Scholes equation constructed via Propositions 1 and 2. Before we do this, however, we present results of basic Lie symmetry analysis of the Black-Scholes equation and the adjoint equation. We present the admitted Lie point symmetries and associated invariant solutions.
5.1. Lie Point Symmetries and Invariant Solutions of the Equations (1) and (14)
Lie point symmetries of the Black-Scholes Equation (1) and the associated adjoint equation are easily obtained. Using Program Lie [27], for example, we determine that symmetries of the Black-Scholes equation are
where is any solution of the Black-Scholes equation. Similarly, Lie point symmetries of the associated adjoint Equation (14) are
where is any solution of the adjoint Equation (14). Using Lie point symmetries of the Black-Scholes equation and those of the associated adjoint equation, we construct invariant solutions of these two equations via the usual routine [16,17,19,22]. These solutions are given in Table 1 and Table 2, respectively.
Table 1.
Invariant solutions of the Black-Scholes Equation (1).
Table 2.
Invariant solutions of the adjoint Equation (14).
5.2. Construction of Conservation Laws of the Black-Scholes Equation via Proposition 1
Consider symmetries (24) of the Black-Scholes equation.
Example 1.
Using , we have that and . Therefore we obtain, from (17) and (18), that
where θ is an arbitrary function. Transferring the terms form to (following Ibragimov [15]) we obtain
Example 2.
Using , we have that and . Therefore
5.3. Construction of Conservation Laws of the Black-Scholes Equation via Proposition 2
Consider invariant solutions of the adjoint equations given in Table 2.
Example 3.
Using the invariant solution that arises from , we obtain from (22) and (23) that
Example 4.
Using the invariant solution that arises from , we obtain from (22) and (23) that
6. Every Solution of the Black-Scholes Equation Gives Rise to a Conservation Law of the Equation
In both Propositions 1 and 2, the constructed conservation laws involve solutions of the adjoint equation. We can avoid making reference to the adjoint equation in the constructed conservation laws if we exploit the equivalence between the Black-Scholes equation and the associated adjoint equation, which is done via an equivalence transformation.
Proposition 3.
Proof.
We note that the Black-Scholes Equation (1), which we reproduce here in the new variables , z and ,
and the associated adjoint Equation (14) are both evolutionary parabolic PDEs admitting 6 to ∞ Lie point symmetries. Therefore, Equation (42) is reduceable to the adjoint Equation (14) via an equivalence transformation of the form [26]
for some functions , and . Writing the Black-Scholes Equation (42) in terms of the variables x, t and u via (43) we obtain
where ′ denotes the differentiation with respect to t. Comparing this equation with the adjoint Equation (14) and equating the respective coefficients, we arrive at the following system of determining equations:
The general solution of the determining Equations (45)–(48) is found after lengthy calculations to be
where , , and are arbitrary constants. Setting and , we obtain
from which Proposition 3 follows. □
7. Concluding Remarks
Two approaches have been employed in this paper to establish general characterizations of conservation laws of the Black-Scholes equation. In one approach the self-adjointness of the Black-Scholes equation was exploited following a method due to Ibragimov [4], while in the other approach the direct method, proposed by Anco and Bluman [3], was used. We have provided illustrations of how infinitely many conservation laws of the Black-Scholes equation may be determined easily from the derived general characterizations of conservation laws of the equation. Furthermore, we have constructed an equivalence transformation between the Black-Scholes equation and its adjoint equation, which provides a correspondence between every solution of the Black-Scholes equation and a conservation law of the equation.
Funding
The author thanks the Directorate of Research Development and Innovation of Walter Sisulu University for financial support rendered towards publication of this article.
Conflicts of Interest
The author declares that there is no conflict of interest regarding the publication of this paper.
References
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–659. [Google Scholar] [CrossRef]
- Ruggieri, M.; Speciale, M.P. Conservation laws by means of a new mixed method, Internat. J. Non-Linear Mech. 2017, 95, 327–332. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G.W. Derivation of conservation laws from nonlocal symmetries of differential equations. J. Math. Phys. 1996, 37, 2361–2375. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G.W. Direct constrution of conservation laws from field equations. Phys. Rev. Lett. 1997, 78, 2869–2873. [Google Scholar] [CrossRef]
- Yaşar, E.; Özer, T. Invariant solutions and conservation laws to nonconservative FP equation. Comput. Math. Appl. 2010, 59, 3203–3210. [Google Scholar] [CrossRef]
- Wolf, T. A comparison of four approaches to the calculation of conservation laws. Eur. J. Math. 2002, 13, 129–152. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G.W. Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications. Eur. J. Appl. Math. 2002, 13, 545–566. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G.W. Direct construction method for conservation laws of partial differential equations Part II: General treatment. Eur. J. Appl. Math. 2002, 9, 567–585. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. The relationship between symmetries and conservation laws. Int. J. Theor. Phys. 2000, 39, 23–40. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. Noether-type symmetries and conservation laws via partial Lagragians. Nonlinear Dynam. 2006, 45, 367–383. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. A Basis of Conservation Laws for Partial Differential Equations. Nonlinear Math. Phys. 2002, 9, 60–72. [Google Scholar] [CrossRef]
- Yaşar, E.; San, S.; Sağlam Özkan, Y. Nonlinear self-adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation. Open Phys. 2016, 14. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 2011, 44, 432002. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Construction of Conservation Laws Using Symmetries. In Similarity and Symmetry Methods; Ganghoffer, J.F., Mladenov, I., Eds.; Lecture Notes in Applied and Computational Mechanics; Springer: Cham, Switzerland, 2014; Volume 73. [Google Scholar]
- Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Edelstein, R.M.; Govinder, K.S. Conservation laws for the Black-Scholes equation. Nonlinear Anal. Real World Appl. 2008, 10, 3372–3380. [Google Scholar] [CrossRef]
- Hashemi, M.S. On Black-Scholes equation; method of heir-equations, nonlinear self-adjointness and conservation laws. Bull. Iranian Math. Soc. 2016, 42, 903–921. [Google Scholar]
- Wolfram Research, Inc. Mathematica, Version 8.0; Wolfram Research, Inc.: Champaign, IL, USA, 2010. [Google Scholar]
- Gazizov, R.K.; Ibragimov, N.H. Lie symmetry analysis of differential equations in finance. Nonlinear Dynam. 1998, 17, 387–407. [Google Scholar] [CrossRef]
- Head, A.K. LIE, a PC program for Lie analysis of differential equations. Comput. Phys. Commun. 1996, 96, 311–313. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).