# Model and Experimental Characteristics of a Pneumatic Linear Peristaltic Actuator

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Setup

#### 2.1. Overall Description

#### 2.2. System Model

#### 2.3. System Identification

^{®}’s System Identification Toolbox. The data acquisition and control were run with a sampling time ($\Delta =1/5000\text{}\mathrm{s}$) substantially lower than the sampling time used for identification (${\Delta}_{id}=1/50\text{}\mathrm{s})$. This ensures that from an identification’s point of view, the system behaves as being essentially continuous.

## 3. Experimental Characterization

#### 3.1. Leakage Measurements

#### 3.2. Friction Measurements

#### 3.2.1. Static Friction

#### 3.2.2. Viscous Friction

## 4. PID Type Control

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Carneiro, J.F.; Almeida, F.G. Accurate motion control of a servopneumatic system using integral sliding mode control. Int. J. Adv. Manuf. Technol.
**2014**, 77, 1533–1548. [Google Scholar] [CrossRef] - Carneiro, J.F.; Almeida, F.G. Micro tracking and positioning using off-the-shelf servopneumatics. Robot. Comput. Integr. Manuf.
**2014**, 30, 244–255. [Google Scholar] [CrossRef] - Carneiro, J.F.; Almeida, F.G. A macro-micro motion servopneumatic device. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2012**, 226, 775–786. [Google Scholar] [CrossRef] - Merkelbach, S.; Murrenhoff, I.H.; Fey, I.M.; Eßer, B. Pneumatic or electromechanical drives—A comparison regarding their exergy efficiency. In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, 8–10 March 2016. [Google Scholar]
- Gauchel, W.; Haag, S. Servopneumatic Clamping System for the Assembly of Battery Cells in the Area of Electromobility. In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, 8–10 March 2016. [Google Scholar]
- Pinto, J.B. Desenvolvimento de Controlador de Movimento para Cilindro Pneumático de Baixo Atrito. In Departamento de Engenharia Mecânica; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2017. [Google Scholar]
- Rakova, E.; Hepke, J.; Weber, J. EXonomy analysis for the Inter-domain comparison of electromechanical and pneumatic drives. In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, 8–10 March 2016. [Google Scholar]
- Li, S.; Vogt, D.M.; Bartlett, N.W.; Rus, D.; Wood, R.J. Tension Pistons: Amplifying Piston Force Using Fluid-Induced Tension in Flexible Materials. Adv. Funct. Mater.
**2019**, 29, 1901419. [Google Scholar] [CrossRef] - Mirvakili, S.M.; Hunter, I.W. Artificial Muscles: Mechanisms, Applications, and Challenges. Adv. Mater.
**2018**, 30, 1704407. [Google Scholar] [CrossRef] [PubMed] - Pillsbury, T.E.; Wereley, N.M.; Guan, Q. Comparison of contractile and extensile pneumatic artificial muscles. Smart Mater. Struct.
**2017**, 26, 095034. [Google Scholar] [CrossRef] - Falcão Carneiro, J.; Gomes de Almeida, F. Experimental characteristics of a linear peristaltic actuator. In Proceedings of the IFK 2018, 11th International Fluid Power Conference, Aachen, Germany, 19–21 March 2018. [Google Scholar]
- Falcão Carneiro, J.; Gomes de Almeida, F. Friction characteristics and servo control of a linear peristaltic actuator. Int. J. Adv. Manuf. Technol.
**2018**, 96, 23. [Google Scholar] - Carneiro, J.F.; de Almeida, F.G.; Pinto, J.B. Endurance tests of a linear peristaltic actuator. Int. J. Adv. Manuf. Technol.
**2019**, 100, 2103–2114. [Google Scholar] [CrossRef] - Carneiro, J.F.; Almeida, F.G. Undesired oscillations in pneumatic systems. In Nonlinear Science and Complexity; Machado, J.A.T., Luo, A.C.J., Barbosa, R.S., Silva, M.F., Figueiredo, L.B., Eds.; Springer: London, UK, 2011; pp. 229–243. [Google Scholar]
- Carneiro, J.F.; Almeida, F.G. Reduced order thermodynamic models for servopneumatic actuator chambers. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2006**, 220, 301–314. [Google Scholar] [CrossRef] [Green Version] - Carneiro, J.F.; Almeida, F.G. Pneumatic servo valve models based on artificial neural networks. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2011**, 225, 393–411. [Google Scholar] - Carneiro, J.F.; Almeida, F.G. A Neural Network Based Nonlinear Model of a Servopneumatic System. Asme J. Dyn. Syst. Meas. Control
**2012**, 134, 024502. [Google Scholar] [CrossRef] - Varga, Z.; Honkola, P.-K. Mathematical model of pneumatic proportional valve. J. Appl. Sci. Thermodyn. Fluid Mech.
**2012**, 1, 1. [Google Scholar] - ISO 6358 Standard, Pneumatic Fluid Power—Components Using Compressible Fluids—Determination of Flow-Rate Characteristics; International Organization for Standardization: Geneva, Switzerland, 1989; p. 14.

**Figure 2.**Forces acting in the pneumatic linear peristaltic actuator (PLPA): (

**a**) lateral view and (

**b**) top view.

Random Number Generators | Gaussian Distribution | Uniform Distribution |
---|---|---|

Seed | 251 | 0 |

Sampling time [s] | 0.02 | 0.02 |

Mean [V] | 0 | - |

Variance [V^{2}] | 0.25 | - |

Minimum [V] | - | 0.6 |

Maximum [V] | - | 1.5 |

System Parameter | Value | Unit |
---|---|---|

${\omega}_{n}$ | 16.7 | [rad/s] |

$\zeta $ | 0.51 | - |

${k}_{lin}$ | 0.82 | [m/(Vs)] |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Falcão Carneiro, J.; Pinto, J.B.; Gomes de Almeida, F.; Fateri, M.
Model and Experimental Characteristics of a Pneumatic Linear Peristaltic Actuator. *Information* **2020**, *11*, 76.
https://doi.org/10.3390/info11020076

**AMA Style**

Falcão Carneiro J, Pinto JB, Gomes de Almeida F, Fateri M.
Model and Experimental Characteristics of a Pneumatic Linear Peristaltic Actuator. *Information*. 2020; 11(2):76.
https://doi.org/10.3390/info11020076

**Chicago/Turabian Style**

Falcão Carneiro, João, João Bravo Pinto, Fernando Gomes de Almeida, and Miranda Fateri.
2020. "Model and Experimental Characteristics of a Pneumatic Linear Peristaltic Actuator" *Information* 11, no. 2: 76.
https://doi.org/10.3390/info11020076