Using Orthogonal Combined Signals in Broadband ADCP for Improving Velocity Measurement
Abstract
:1. Introduction
2. Theory
2.1. Pulse-Pair Method
2.2. Phase Wrapping
3. Proposed Method
3.1. Orthogonal Combined Signal
3.2. Echo Signal Processing
4. Design Example of the Orthogonal Combined Signals
5. Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prieur, F.; Hansen, R.E. Theoretical improvements when using the second harmonic signal in Acoustic Doppler Current Profilers. IEEE J. Ocean. Eng. 2013, 38, 275–284. [Google Scholar] [CrossRef]
- Brumley, B.H.; Cabrera, R.G.; Deines, K.L.; Terray, E.A. Performance of a Broad-Band Acoustic Doppler Current Profiler. IEEE J. Ocean. Eng. 1991, 16, 402–407. [Google Scholar] [CrossRef]
- Zedel, L.; Hay, A.E.; Cabrera, R.; Lohrmann, A. Performance of a single-beam pulse-to-pulse coherent Doppler profiler. IEEE J. Ocean. Eng. 1996, 21, 290–297. [Google Scholar] [CrossRef]
- Appell, G.F.; Bass, P.D.; Metcalf, M.A. Acoustic Doppler Current Profiler performance in near surface and bottom boundaries. IEEE J. Ocean. Eng. 1991, 16, 390–396. [Google Scholar] [CrossRef]
- Trevorrow, M.V.; Farmer, D.M. The use of Barker codes in Doppler sonar measurements. J. Atmos. Ocean. Technol. 1992, 9, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Pinkel, R. Improvement of Doppler estimation through repeat-sequence coding. In Proceedings of the OCEANS 91, USA/Ocean Technologies and Opportunities in the Pacific for the 90’s, Honolulu, HI, USA, 1–3 October 1991; pp. 977–984. [Google Scholar]
- Wanis, P.; Brumley, B.; Gast, J.; Symonds, D. Sources of measurement variance in broadband Acoustic Doppler Current Profilers. In Proceedings of the IEEE OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–5. [Google Scholar]
- Chi, C.; Vishnu, H.; Beng, K.T.; Chitre, M. Utilizing orthogonal coprime signals for improving broadband Acoustic Doppler Current Profilers. IEEE J. Ocean. Eng. 2019, 99, 1–11. [Google Scholar] [CrossRef]
- Dillon, J.; Zedel, L.; Hay, A.E. On the Distribution of Velocity Measurements From Pulse-to-Pulse Coherent Doppler Sonar. IEEE J. Ocean. Eng. 2012, 37, 613–625. [Google Scholar] [CrossRef]
- Miller, K.; Rochwarger, M. A covariance approach to spectral moment estimation. IEEE Trans. Inf. Theory 1972, 18, 588–596. [Google Scholar] [CrossRef]
- Abeysekera, S. Performance of pulse-pair method of Doppler estimation. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 520–531. [Google Scholar] [CrossRef]
- Ghogho, M.; Swami, A.; Durrani, T.S. Frequency estimation in the presence of Doppler spread: Performance analysis. IEEE Trans. Signal Process. 2001, 49, 777–789. [Google Scholar] [CrossRef]
- Zrnic, D.S. Spectral Moment Estimates from Correlated Pulse Pairs. IEEE Trans. Aerosp. Electron. Syst. 1977, AES-13, 344–354. [Google Scholar] [CrossRef]
- Xiao, Y.C.; Wei, P.; Xiao, X.C.; Tai, H.M. A fast and accurate single frequency estimator. Electron. Lett. 2004, 40, 910–911. [Google Scholar] [CrossRef]
- Fitz, M.P. Further results in the fast estimation of a single frequency. IEEE Trans. Commun. 1994, 42, 862–864. [Google Scholar] [CrossRef]
- Tufts, D.W.; Fiore, P.D. Simple, effective estimation of frequency based on Prony’s method. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 9 May 1996; Volume 5, pp. 2801–2804. [Google Scholar]
- Jian, C.; Shen, Z.; Zhigang, H.; Chunjie, Q. Acoustic velocity measurement in seawater based on phase difference of signal. In Proceedings of the IEEE 2011 10th International Conference on Electronic Measurement and Instruments, Chengdu, China, 16–19 August 2011; pp. 181–184. [Google Scholar]
- Ellis, D.; Washburn, L.; Ohlmann, C.; Gotschalk, C. Improved methods to calculate depth-resolved velocities from glider-mounted ADCPs. In Proceedings of the 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015; pp. 1–10. [Google Scholar]
- Han, N.; Fan, Z.; Fang, S. Phase unwrapping methods for solving the ambiguity in current velocity estimation based on combined signal design. Flow Meas. Instrum. 2018, 59, 126–134. [Google Scholar] [CrossRef]
- Chi, C.; Vishnu, H.; Beng, K.T. Improving Broadband Acoustic Doppler Current Profiler with Orthogonal Coprime Pulse Pairs and Robust Chinese Remainder Theorem. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–5. [Google Scholar]
- Trump, C.L.; Allan, N.; Marmorino, G.O. Side-looking ADCP and Doppler radar measurements across a coastal front. IEEE J. Ocean. Eng. 2000, 25, 423–429. [Google Scholar] [CrossRef]
- Rao, Z.-Y.; Feng, C.-Y. Implementation of coded pulse complex correlation algorithm on broadband ADCP. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), XianNing, China, 16–18 April 2011; pp. 410–413. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Yuan, F.; Cheng, E. Using Orthogonal Combined Signals in Broadband ADCP for Improving Velocity Measurement. J. Mar. Sci. Eng. 2020, 8, 450. https://doi.org/10.3390/jmse8060450
Lin Y, Yuan F, Cheng E. Using Orthogonal Combined Signals in Broadband ADCP for Improving Velocity Measurement. Journal of Marine Science and Engineering. 2020; 8(6):450. https://doi.org/10.3390/jmse8060450
Chicago/Turabian StyleLin, Yujing, Fei Yuan, and En Cheng. 2020. "Using Orthogonal Combined Signals in Broadband ADCP for Improving Velocity Measurement" Journal of Marine Science and Engineering 8, no. 6: 450. https://doi.org/10.3390/jmse8060450
APA StyleLin, Y., Yuan, F., & Cheng, E. (2020). Using Orthogonal Combined Signals in Broadband ADCP for Improving Velocity Measurement. Journal of Marine Science and Engineering, 8(6), 450. https://doi.org/10.3390/jmse8060450