# Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Peridynamic (PD) Theory

#### 2.1. Basic Concepts in PD Theory

#### 2.2. PD Mechanical Laminate Model

#### 2.3. PD Thermal Laminate Model

#### 2.4. Failure Criteria

## 3. Numerical Implementation

#### 3.1. Problem Description

#### 3.2. Numerical Results

#### 3.2.1. Subjected to Uniform Pressure Loading

#### 3.2.2. Subjected to Uniform Non-Uniform Pressure Load

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Mouritz, A.P. The damage to stitched GRP laminates by underwater explosion shock loading. Compos. Sci. Technol.
**1995**, 55, 365–374. [Google Scholar] [CrossRef] - Hellbratt, S.-E. Experiences from Design and Production of the 72 m CFRP-Sandwich Corvette Visby. In Proceedings of the 6th International Conference on Sandwich Construction; CRC Press: Fort Lauderdale, FL, USA, 2003; pp. 15–24. [Google Scholar]
- Li, H.C.H.; Herszberg, I.; Davis, C.E.; Mouritz, A.P.; Galea, S.C. Health monitoring of marine composite structural joints using fibre optic sensors. Compos. Struct.
**2006**, 75, 321–327. [Google Scholar] [CrossRef] - Baley, C.; Davies, P.; Grohens, Y.; Dolto, G. Application of interlaminar tests to marine composites. A literature review. Appl. Compos. Mater.
**2004**, 11, 99–126. [Google Scholar] [CrossRef] - Ghobadi, A. Common type of damages in composites and their inspections. World J. Mech.
**2017**, 7, 24–33. [Google Scholar] [CrossRef] - Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf.
**1996**, 27, 1123–1131. [Google Scholar] [CrossRef] - Diyaroglu, C. Peridynamics and Its Applications in Marine Structures. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2016. [Google Scholar]
- LeBlanc, J.; Shukla, A. Dynamic response of curved composite panels to underwater explosive loading: Experimental and computational comparisons. Compos. Struct.
**2011**, 93, 3072–3081. [Google Scholar] [CrossRef] - Tagarielli, V.L.; Schiffer, A. The response to underwater blast. In Dynamic Deformation, Damage and Fracture in Composite Materials and Structures; Woodhead Publishing: Sawston, UK, 2016; pp. 279–307. [Google Scholar]
- Arora, H.; Rolfe, E.; Kelly, M.; Dear, J.P. Chapter 7—Full-scale air and underwater-blast loading of composite sandwich panels. In Explosion Blast Response of Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 161–199. [Google Scholar]
- Hall, D.J. Examination of the effects of underwater blasts on sandwich composite structures. Compos. Struct.
**1989**, 11, 101–120. [Google Scholar] [CrossRef] - Latourte, F.; Gregoire, D.; Zenkert, D.; Wei, X.D.; Espinosa, H.D. Failure mechanisms in composite panels subjected to underwater impulsive loads. J. Mech. Phys. Solids
**2011**, 59, 1623–1646. [Google Scholar] [CrossRef] - LeBlanc, J.; Shukla, A. Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: An experimental and computational study. Compos. Struct.
**2010**, 92, 2421–2430. [Google Scholar] [CrossRef] - Wadley, H.; Dharmasena, K.; Chen, Y.C.; Dudt, P.; Knight, D.; Charette, R.; Kiddy, K. Compressive response of multilayered pyramidal lattices during underwater shock loading. Int. J. Impact Eng.
**2008**, 35, 1102–1114. [Google Scholar] [CrossRef] - Rabczuk, T.; Samaniego, E.; Belytschko, T. Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. Int. J. Impact Eng.
**2007**, 34, 163–177. [Google Scholar] [CrossRef] - Hoo Fatt, M.S.; Palla, L. Analytical modeling of composite sandwich panels under blast loads. J. Sandw. Struct. Mater.
**2009**, 11, 357–380. [Google Scholar] [CrossRef] - Kazancı, Z. A review on the response of blast loaded laminated composite plates. Prog. Aerosp. Sci.
**2016**, 81, 49–59. [Google Scholar] [CrossRef] - Carrera, E.; Demasi, L.; Manganello, M. Assessment of plate elements on bending and vibrations of composite structures. Mech. Adv. Mater. Struct.
**2002**, 9, 333–357. [Google Scholar] [CrossRef] - Liew, K.M.; Zhao, X.; Ferreira, A.J.M. A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct.
**2011**, 93, 2031–2041. [Google Scholar] [CrossRef] - Dawe, D.J. Use of the finite strip method in predicting the behaviour of composite laminated structures. Compos. Struct.
**2002**, 57, 11–36. [Google Scholar] [CrossRef] - Madenci, E.; Oterkus, E. Peridynamic Theory and Its Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res.
**1976**, 6, 773–781. [Google Scholar] [CrossRef] - Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng.
**1999**, 45, 601–620. [Google Scholar] [CrossRef] - Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. Peridynamic states and constitutive modeling. J. Elast.
**2007**, 88, 151–184. [Google Scholar] [CrossRef] - Oterkus, E.; Madenci, E. Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct.
**2012**, 7, 45–84. [Google Scholar] [CrossRef] - Kilic, B.; Agwai, A.; Madenci, E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct.
**2009**, 90, 141–151. [Google Scholar] [CrossRef] - Oterkus, E. Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2010. [Google Scholar]
- Oterkus, E.; Madenci, E. Peridynamic theory for damage initiation and growth in composite laminate. Key Eng. Mater.
**2011**, 488–489, 355–358. [Google Scholar] [CrossRef] - Hu, Y.L.; Madenci, E. Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos. Struct.
**2016**, 153, 139–175. [Google Scholar] [CrossRef] - Biot, M.A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys.
**1956**, 27, 240–253. [Google Scholar] [CrossRef] - Oterkus, S.; Madenci, E.; Agwai, A. Peridynamic thermal diffusion. J. Comput. Phys.
**2014**, 265, 71–96. [Google Scholar] [CrossRef][Green Version] - Oterkus, S.; Madenci, E.; Agwai, A. Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids
**2014**, 64, 1–23. [Google Scholar] [CrossRef][Green Version] - Oterkus, S.; Madenci, E. Fully Coupled Thermomechanical Analysis of Fiber Reinforced Composites Using Peridynamics. In Proceedings of the 55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference—SciTech Forum and Exposition, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar]
- Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct.
**2005**, 83, 1526–1535. [Google Scholar] [CrossRef] - Oterkus, S. Peridynamics for the Solution of Multiphysics Problems. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2015. [Google Scholar]
- Silling, S.; Weckner, O.; Askari, E.; Bobaru, F. Crack nucleation in a peridynamic solid. Int. J. Fract.
**2010**, 162, 219–227. [Google Scholar] [CrossRef] - Diyaroglu, C.; Oterkus, E.; Madenci, E.; Rabczuk, T.; Siddiq, A. Peridynamic modeling of composite laminates under explosive loading. Compos. Struct.
**2016**, 144, 14–23. [Google Scholar] [CrossRef][Green Version] - Cimpoeru, S.J.; Ritzel, D.V.; Brett, J.M. Chapter 1—Physics of explosive loading of structures. In Explosion Blast Response of Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 1–22. [Google Scholar]
- Turkmen, H.S.; Mecitoglu, Z. Nonlinear structural response of laminated composite plates subjected to blast loading. AIAA J.
**1999**, 37, 1639–1647. [Google Scholar] [CrossRef]

**Figure 2.**Illustration of PD laminate model for $\delta =2\Delta x$ and fibre direction, $\mathsf{\Phi}=0$.

**Figure 3.**Geometry dimension illustration of the test laminate. (Blue colour represents 0° and yellow colour represents 90° plies).

**Figure 4.**Illustration of PD discretization for one ply (blue colour represents the fixed boundary region and orange colour represents the inner part).

**Figure 6.**(

**a**) Illustration of non-uniform pressure distribution over the top ply and (

**b**) pressure profile.

**Figure 7.**(

**a**) Variation of the displacement in z direction of the central point as a function of time; (

**b**) Vertical displacement distribution for the top ply at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 8.**(

**a**) Matrix damage and (

**b**) temperature change distribution (K) of top ply at $0.1538\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 9.**(

**a**) Matrix damage and (

**b**) temperature change distribution (K) of middle (7th) ply at $0.1538\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 10.**(

**a**) Matrix damage and (

**b**) temperature change distribution (K) of bottom ply at $0.1538\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 11.**(

**a**) Matrix damage and (

**b**) temperature change distribution (K) of the laminate at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 12.**Matrix damage comparison of top ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 13.**Matrix damage comparison of middle (7th) ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 14.**Matrix damage comparison of bottom ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$.

**Figure 15.**Matrix damage comparison of top ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 16.**Matrix damage comparison of middle (7th) ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 17.**Matrix damage comparison of bottom ply for (

**a**) coupled case and (

**b**) uncoupled case at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 18.**Material damage during test [13].

**Figure 19.**Interlayer shear damage comparison for (

**a**) coupled case and (

**b**) uncoupled case at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 20.**Interlayer shear damage of middle ply in coupled case at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 21.**(

**a**) Distribution of temperature change (K) of top ply at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$; (

**b**) Distribution of temperature change (K) of top ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$; (

**c**) Maximum stretch distribution of top ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 22.**(

**a**) Distribution of temperature change (K) of middle ply at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$; (

**b**) Distribution of temperature change (K) of middle ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$; (

**c**) Maximum stretch distribution of middle ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Figure 23.**(

**a**) Distribution of temperature change (K) of bottom ply at $0.28453\times {10}^{-3}\text{\hspace{0.17em}}\mathrm{s}$; (

**b**) Distribution of temperature change (K) of bottom ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$; (

**c**) Maximum stretch distribution of bottom ply at $0.3461\times {10}^{-3}\text{}\mathrm{s}$.

**Table 1.**Material properties of composite [8].

Mechanical Properties | Thermal Properties | ||
---|---|---|---|

${E}_{1}\text{\hspace{0.17em}}\left(\mathrm{GPa}\right)$ | 39.3 | ${\alpha}_{1}\text{\hspace{0.17em}}\left(\mathsf{\mu}\mathrm{m}/\mathrm{m}/\mathrm{K}\right)$ | 8.6 |

${E}_{2}\text{\hspace{0.17em}}\left(\mathrm{GPa}\right)$ | 9.7 | ${\alpha}_{2}\text{\hspace{0.17em}}\left(\mathsf{\mu}\mathrm{m}/\mathrm{m}/\mathrm{K}\right)$ | 22.1 |

${G}_{12}\text{\hspace{0.17em}}\left(\mathrm{GPa}\right)$ | 3.32 | ${k}_{1}\text{\hspace{0.17em}}\left(\mathrm{W}/\mathrm{mK}\right)$ | 10.4 |

Poisson’s ratio ${\nu}_{12}$ | 0.33 | ${k}_{2}\text{\hspace{0.17em}}\left(\mathrm{W}/\mathrm{mK}\right)$ | 0.89 |

$\rho \text{\hspace{0.17em}}\left({\mathrm{kg}/\mathrm{m}}^{3}\right)$ | 1850 | ${c}_{v}\text{\hspace{0.17em}}\left(\mathrm{J}/\left(\mathrm{kg}\cdot \mathrm{K}\right)\right)$ | 879 |

${E}_{m}\text{\hspace{0.17em}}\left(\mathrm{GPa}\right)$ | 3.792 | ${\alpha}_{m}\text{\hspace{0.17em}}\left(\mathsf{\mu}\mathrm{m}/\mathrm{m}/\mathrm{K}\right)$ | 63 |

${G}_{m}\text{\hspace{0.17em}}\left(\mathrm{GPa}\right)$ | 1.422 | ${k}_{m}\text{\hspace{0.17em}}\left(\mathrm{W}/\mathrm{mK}\right)$ | 0.34 |

Poisson’s ratio ${\nu}_{m}$ | 0.33 | ${\Theta}_{0}\left(\mathrm{K}\right)$ | 285 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, Y.; Oterkus, S. Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects. *J. Mar. Sci. Eng.* **2018**, *6*, 38.
https://doi.org/10.3390/jmse6020038

**AMA Style**

Gao Y, Oterkus S. Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects. *Journal of Marine Science and Engineering*. 2018; 6(2):38.
https://doi.org/10.3390/jmse6020038

**Chicago/Turabian Style**

Gao, Yan, and Selda Oterkus. 2018. "Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects" *Journal of Marine Science and Engineering* 6, no. 2: 38.
https://doi.org/10.3390/jmse6020038