Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinspired Artificial Vagina Development
2.2. Semen Collection
2.3. Macroscopic Semen Characteristics and Sperm Concentrations
2.4. Motility and Kinematic Analyses
2.5. Plasma Membrane Integrity Analysis
2.6. Data Analyses
3. Results
3.1. Macroscopic Semen Characteristics and Sperm Concentrations
3.2. Motility and Kinematics
3.3. Plasma Membrane Integrity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | artificial insemination |
ART | assisted reproductive technologies |
AV | artificial vagina |
BAV | bioinspired artificial vagina |
CASA | computer-aided sperm analysis |
References
- Andermann, T.; Faurby, S.; Turvey, S.T.; Antonelli, A.; Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 2020, 6, eabb2313. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, M.B. Livestock and livestock product trends by 2050: Review. Int. J. Anim. Res. 2019, 4, 30. [Google Scholar]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 2019, 100, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Holt, W.V. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol. Reprod. 2019, 101, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Snook, R.R. Sperm in competition: Not playing by the numbers. Trends Ecol. Evol. 2005, 20, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.V.; Van Look, K.J.W. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction 2004, 127, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Dziekońska, A.; Partyka, A. Current status and advances in semen preservation. Animals 2023, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.T.; Sanchez-Calabuig, M.J.; Hildebrandt, T.B.; Santiago-Moreno, J.; Saragusty, J. Sperm cryopreservation in wild animals. Eur. J. Wildl. Res. 2014, 60, 851–864. [Google Scholar] [CrossRef]
- Aral, F.; Aral, S. Comparison of semen collection methods in Merino rams. Turk. J. Vet. Anim. Sci. 2004, 28, 47–53. [Google Scholar]
- Gvaryahu, G.; Robinzon, B.; Meltzer, A.; Perek, M.; Snapir, N. An improved method for obtaining semen from Muscovy drakes and some of its quantitative and qualitative characteristics. Poult. Sci. 1984, 63, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rabadán, P.; Ramón, M.; García-Álvarez, O.; Maroto-Morales, A.; del Olmo, E.; Pérez-Guzmán, M.D.; Bisbal, A.; Fernández-Santos, M.R.; Garde, J.J.; Soler, A.J. Effect of semen collection method (artificial vagina vs. electroejaculation), extender and centrifugation on post-thaw sperm quality of Blanca-Celtibérica buck ejaculates. Anim. Reprod. Sci. 2012, 132, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Matthews, N.; Bester, N.; Schwalbach, L.M.J. A comparison of ram semen collected by artificial vagina and electro-ejaculation. S. Afr. J. Anim. Sci. 2003, 4, 28–30. [Google Scholar]
- Nadaf, S.M.; Ramesh, V.; Mech, M.; Khan, M.H.; Ahmed, F.A.; Ponraj, P.; Mitra, A. Comparative ejaculatory response, fresh and frozen semen quality and fertility to artificial vagina vs electroejaculation method of semen collection in mithun (Bos frontalis) bulls. Andrologia 2022, 53, e14330. [Google Scholar] [CrossRef] [PubMed]
- Cholakkal, I.K.; Koroth, A.; Sharifi, S.A. Observations on semen collection and suitability of different modifications of artificial vagina for dromedary camels (Camelus dromedarius). J. Camel Pract. Res. 2016, 23, 169–174. [Google Scholar] [CrossRef]
- Dascanio, J.J. Missouri artificial vagina. In Equine Reproductive Procedures; Dascanio, J., McCue, P., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 329–331. [Google Scholar]
- Love, C.C. Semen collection techniques. Vet. Clin. N. Am. Equine Pract. 1992, 8, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Harrop, A.E. A new type of canine artificial vagina. Br. Vet. J. 1954, 110, 194–196. [Google Scholar] [CrossRef]
- Seidel, G.E.; Foote, R.H. Influence of semen collection interval and tactile stimuli on semen quality and sperm output in bulls. J. Dairy Sci. 1969, 52, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.W.; Flores, U.; Garnica, J.; Ordoñez, C. Collection of semen and artificial insemination of alpacas. Theriogenology 1997, 47, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, J.A.; Morton, K.M.; Billah, M. Artificial insemination in dromedary camels. Anim. Reprod. Sci. 2013, 136, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.E.; Christians, C.J. Sperm loss using different artificial vaginas in rams. Small Rumin. Res. 2009, 83, 85–87. [Google Scholar] [CrossRef]
- Brennan, P.L.R. Studying genital coevolution to understand intermittent organ morphology. Integr. Comp. Biol. 2016, 56, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, W.G. Sexual Selection and Animal Genitalia; Harvard University Press: Cambridge, UK, 1985. [Google Scholar]
- Brennan, P.L.; Prum, R.O.; McCracken, K.G.; Sorenson, M.D.; Wilson, R.E.; Birkhead, T.R. Coevolution of male and female genital morphology in waterfowl. PLoS ONE 2007, 2, e418. [Google Scholar] [CrossRef] [PubMed]
- Friesen, C.R.; Uhrig, E.J.; Squire, M.K.; Mason, R.T.; Brennan, P.L.R. Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proc. R. Soc. B 2014, 281, 20132694. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, B.P.; Antalek-Schrag, P.; Conith, A.J.; Natanson, L.J.; Brennan, P.L.R. Variability and asymmetry in the shape of the spiny dogfish vagina revealed by 2D and 3D geometric morphometrics. J. Zool. 2019, 308, 16–27. [Google Scholar] [CrossRef]
- Orbach, D.N.; Kelly, D.A.; Solano, M.; Brennan, P.L.R. Genital interactions during simulated copulation among marine mammals. Proc. R. Soc. B 2017, 284, 20171265. [Google Scholar] [CrossRef] [PubMed]
- Orbach, D.N.; Marshall, C.D.; Mesnick, S.L.; Würsig, B. Patterns of cetacean vaginal folds yield insights into functionality. PLoS ONE 2017, 12, e0175037. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.P. Breeding bottlenose dolphins in captivity. In The Bottlenose Dolphin; Leatherwood, S., Reeves, R.R., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 435–446. [Google Scholar]
- Robeck, T.R.; Curry, B.F.; McBain, J.F.; Kraemer, D.C. Reproductive biology of the bottlenose dolphin (Tursiops truncatus) and the potential application of advanced reproductive technologies. J. Zoo. Wildl. Med. 1994, 25, 321–336. [Google Scholar]
- van der Horst, G.; Medger, K.; Steckler, D.; Luther, I.; Bartels, P. Bottlenose dolphin (Tursiops truncatus) sperm revisited: Motility, morphology and ultrastructure of fresh sperm of consecutive ejaculates. Anim. Reprod. Sci. 2018, 195, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Yuen, Q.W.H.; Brook, F.M.; Kinoshita, R.E.; Ying, M.T.C. Semen collection and ejaculate characteristics in the Indo-Pacific bottlenose dolphin (Tursiops aduncus). J. Androl. 2009, 30, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Dinnel, P.A.; Link, J.M.; Stober, Q.J. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch. Environ. Contam. Toxicol. 1987, 16, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.; Cowart, J.R.; Montano, G.; Sánchez-Contreras, G.J.; Orbach, D.N. Salinity and pH affect common bottlenose dolphin (Tursiops truncatus) sperm viability. Anim. Reprod. Sci. 2025, 277, 107838. [Google Scholar] [CrossRef] [PubMed]
- Chomsrimek, N.; Choktanasiri, W.; Wongkularb, A.; O-Prasertsawat, P. Effect of time between ejaculation and analysis on sperm motility. Thai J. Obstet. Gynaecol. 2008, 16, 109–114. [Google Scholar]
- Ramu, S.; Jeyendran, R.S. The hypo-osmotic swelling test for evaluation of sperm membrane integrity. In Spermatogenesis: Methods in Molecular Biology; Carrell, D., Aston, K., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 21–25. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Pinheiro, J.; Bates, D. ; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R Package, version 3; R Core Team: Vienna, Austria, 2024; pp. 1–166. [Google Scholar]
- Koller, M. robustlmm: An R package for robust estimation of linear mixed-effects models. J. State Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. State Softw. 2015, 67, 1–48. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package, version 4; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Mansour, N. A novel, patented method for semen collection in dromedary camel (Camelus dromedarius). Reprod. Dom. Anim. 2023, 58, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, P.; Garriga, J.; Casas, I.; Yeste, M.; Bartumeus, F. Predicting fertility from sperm motility landscapes. Commun. Biol. 2022, 5, 1027. [Google Scholar] [CrossRef] [PubMed]
- Brogliatti, G.; Garcia Migliaro, F.; Cavia, R.; Larraburu, G.; Albrecht, A. CASA parameters of fresh bull semen collected by artificial vagina or electroejaculation in Argentina. Reprod. Fertil. Dev. 2005, 17, 156. [Google Scholar] [CrossRef]
- Clarke, R.H.; Hewetson, R.W.; Thompson, B.J. Comparison of the fertility of bovine semen collected by artificial vagina and electro-ejaculation from bulls with low libido. Aust. Vet. J. 1973, 49, 240–241. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rabadán, P.; Soler, A.J.; Ramón, M.; García-Álvarez, O.; Maroto-Morales, A.; Iniesta-Cuerda, M.; Fernández-Santos, M.R.; Montoro, V.; Pérez-Guzmán, M.D.; Garde, J.J. Influence of semen collection method on sperm cryoresistance in small ruminants. Anim. Reprod. Sci. 2016, 167, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.C.; de Verdier, K.; Bage, R.; Morrell, J.M. Semen collection methods in alpacas. Vet. Rec. 2017, 180, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, L.C.; Masken, J.F.; Hopwood, M.L. Fractionation of the bovine ejaculate. J. Dairy Sci. 1964, 47, 823–825. [Google Scholar] [CrossRef]
- Giuliano, S.; Director, A.; Gambarotta, M.; Trasorras, V.; Miragaya, M. Collection method, season and individual variation on seminal characteristics in the llama (Lama glama). Anim. Reprod. Sci. 2008, 104, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, A.; Manes, J.; Ríos, G.; Aller, J.; Cesari, A.; Alberio, R.; Hozbor, F. Effect of seminal plasma on post-thaw quality and functionality of Corriedale ram sperm obtained by electroejaculation and artificial vagina. Reprod. Dom. Anim. 2015, 50, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Colborn, D.R.; Merilan, C.P.; Loch, W.E. Temperature and pH effects on rubber toxicity for equine spermatozoa. J. Equine Vet. Sci. 1990, 10, 343–347. [Google Scholar] [CrossRef]
- Flick, D.L.; Merilan, C.P. Toxicity of artificial vagina liners for bovine spermatozoa. Theriogenology 1988, 29, 1207–1213. [Google Scholar] [CrossRef]
- Merilan, C.P.; Loch, W.E. The effect of artificial vagina liners on livability of stallion spermatozoa. J. Equine Vet. Sci. 1987, 7, 226–228. [Google Scholar] [CrossRef]
- Monaco, D.; Fatnassi, M.; Lamia, D.; Padalino, B.; Seddik, M.-M.; Khorchani, T.; Hammadi, M.; Lacalandra, G.M. Mating behaviour and semen parameters in dromedary camel bulls (Camelus dromedarius): A comparison between two types of artificial vagina. Emir. J. Food Agric. 2018, 30, 326–334. [Google Scholar] [CrossRef]
- Serres, A.; Hao, Y.; Wang, D. Socio-sexual interactions in captive finless porpoises and bottlenose dolphins. Mar. Mammal Sci. 2022, 38, 812–821. [Google Scholar] [CrossRef]
- Carlsen, E.; Peterson, J.H.; Andersson, A.-M.; Skakkebaek, N.E. Effects of ejaculatory frequency and season on variations in semen quality. Fertil. Steril. 2004, 82, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Ollero, M.; Muniño-Blanco, T.; López-Pérez, M.J.; Cebrián-Pérez, J.A. Viability of ram spermatozoa in relation to the abstinence period and successive ejaculations. Int. J. Androl. 1996, 19, 287–292. [Google Scholar] [CrossRef] [PubMed]
Model Parameters | Treatment F Value | Treatment p-Value |
---|---|---|
volume~treatment | 0.12 | 0.73 |
pH~treatment | 0.59 | 0.46 |
concentration~treatment | 2.42 | 0.16 |
% motile~treatment | 0.21 | 0.65 |
% immotile~treatment | 0.21 | 0.65 |
% progressive~treatment | 0.27 | 0.61 |
% non-progressive~treatment | 0.17 | 0.69 |
% rapid speed~treatment | 0.28 | 0.60 |
% medium speed~treatment | 0.11 | 0.75 |
% slow speed~treatment | 0.068 | 0.80 |
VCL~treatment | 0.036 | 0.85 |
VSL~treatment | 0.013 | 0.91 |
VAP~treatment | 0.0068 | 0.94 |
STR~treatment | 1.69 | 0.21 |
LIN~treatment | 1.98 | 0.18 |
WOB~treatment | 4.19 | 0.06 |
ALH~treatment | 0.0083 | 0.93 |
BCF~treatment | 0.0092 | 0.92 |
plasma membrane integrity~ treatment | 12.08 | 0.999 |
Motility/Kinematic Parameter | Bioinspired Artificial Vagina Mean ± SD; Median | Manual Stimulation Mean ± SD; Median |
---|---|---|
Motile | 86% ± 12; 91% | 87% ± 7; 88% |
Immotile | 14% ± 11; 9% | 12% ± 7; 12% |
Progressive | 83% ± 14; 91% | 85% ± 8; 87% |
Non-progressive | 2.67% ± 4.07; 1.33% | 2.02% ± 1.93; 1.40% |
Rapid speed | 83% ± 15; 91% | 85% ± 8; 86% |
Medium speed | 1.88% ± 2.91; 1.01% | 1.27% ± 1.26; 1.17% |
Slow speed | 1.12% ± 1.61; 0.46% | 0.98% ± 1.13; 0.69% |
Curvilinear velocity | 110 µm/s ± 56; 122 µm/s | 112 µm/s ± 55; 125 µm/s |
Straight-line velocity | 89 µm/s ± 49; 100 µm/s | 90 µm/s ± 50; 98 µm/s |
Average pathway velocity | 94 µm/s ± 50; 105 µm/s | 95 µm/s ± 50; 106 µm/s |
Straightness of movement | 79% ± 17; 86% | 74% ± 22; 79% |
Linearity | 67% ± 18; 74% | 62% ± 22; 66% |
Amount of wobble | 74% ± 15; 81% | 68% ± 19; 72% |
Amplitude of lateral head displacement | 1.20 µm ± 0.51; 1.31 µm | 1.19 µm ± 0.47; 1.24 µm |
Beat cross-frequency | 18.86 Hz ± 8.87; 21.66 Hz | 19.04 Hz ± 8.87; 21.63 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rich, J.; Sánchez-Contreras, G.J.; Cowart, J.R.; Orbach, D.N. Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins. J. Mar. Sci. Eng. 2025, 13, 1376. https://doi.org/10.3390/jmse13071376
Rich J, Sánchez-Contreras GJ, Cowart JR, Orbach DN. Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins. Journal of Marine Science and Engineering. 2025; 13(7):1376. https://doi.org/10.3390/jmse13071376
Chicago/Turabian StyleRich, Jacquline, Guillermo J. Sánchez-Contreras, Jonathan R. Cowart, and Dara N. Orbach. 2025. "Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins" Journal of Marine Science and Engineering 13, no. 7: 1376. https://doi.org/10.3390/jmse13071376
APA StyleRich, J., Sánchez-Contreras, G. J., Cowart, J. R., & Orbach, D. N. (2025). Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins. Journal of Marine Science and Engineering, 13(7), 1376. https://doi.org/10.3390/jmse13071376