Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Measurement and Data
2.2. Methods of Analysis
3. Results
3.1. Analysis of Variation Characteristics of Mean Doppler Spectra
3.1.1. Comparisons of Mean Doppler Spectra at Different Sea States
3.1.2. Analysis of Frequency Shifts and Spectral Widths of Mean Spectra with Ocean Parameters
3.2. Analysis of Variation Characteristics of Short-Time Doppler Spectra
3.2.1. Comparisons of Short-Time Doppler Spectra at Different Sea States
3.2.2. Influence of Clutter Intensity and Ocean Parameters on Frequency Shifts and Spectral Widths of Short-Time Spectra
4. Discussion
4.1. Semi-Empirical Model for Frequency Shift and Spectral Width of Mean Spectra
4.2. Semi-Empirical Model for Frequency Shift of the Shot-Time Spectra
4.3. Discussion of Semi-Empirical Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skolnik, M.I. Radar Handbook, 3rd ed.; McGraw Hill: New York, NY, USA, 2008. [Google Scholar]
- Nathanson, F.E.; Reilly, J.P.; Cohen, M.N. Radar Design Principles-Signal Processing and the Environment; Johns Hopkins University Silver Spring: Baltimore, MD, USA, 1991. [Google Scholar]
- Ward, K.D.; Watts, S.; Tough, R.J. Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd ed.; IET: London, UK, 2013. [Google Scholar]
- Li, Q.; Yin, Z.; Zhu, X.; Zhang, Y. Measurement and Modeling of Radar Clutter from Land and Sea; National Defense Industry Press: Beijing, China, 2017. [Google Scholar]
- Crombie, D.D. Doppler Spectrum of Sea Echo at 13.56 Mc./s. Nature 1955, 175, 681–682. [Google Scholar] [CrossRef]
- Barrick, D. Remote sensing of sea state by radar. In Proceedings of the Ocean 72-IEEE International Conference on Engineering in the Ocean Environment, Newport, RI, USA, 13–15 September 1972; pp. 186–192. [Google Scholar] [CrossRef]
- Hisaki, Y.; Tokuda, M. VHF and HF sea echo Doppler spectrum for a finite illuminated area. Radio Sci. 2001, 36, 425–440. [Google Scholar] [CrossRef]
- Gill, E.W.; Walsh, J. High-frequency bistatic cross sections of the ocean surface. Radio Sci. 2001, 36, 1459–1475. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Zhao, C.; Ding, F.; Chen, X. The Scattering Coefficient for Shore-to-Air Bistatic High Frequency (HF) Radar Configurations as Applied to Ocean Observations. Remote Sens. 2019, 11, 2978. [Google Scholar] [CrossRef]
- Plant, W.J.; Keller, W.C. Evidence of Bragg scattering in microwave Doppler spectra of sea return. J. Geophys. Res. Oceans 1990, 95, 16299–16310. [Google Scholar] [CrossRef]
- Lee, P.H.Y.; Barter, J.D.; Beach, K.L.; Caponi, E.; Hindman, L.; Lake, B.M.; Rungaldier, H.; Shelton, J.C. Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angles. IEE Proc. Radar Sonar Navig. 2002, 142, 252–258. [Google Scholar] [CrossRef]
- Lee, P.H.Y.; Barter, J.D.; Lake, B.M.; Thompson, H.R. Lineshape analysis of breaking-wave doppler spectra. IEE Proc. Radar Sonar Navig. 1998, 145, 135–139. [Google Scholar] [CrossRef]
- Walker, D. Experimentally motivated model for low grazing angle radar doppler spectra of the sea surface. IEE Proc. Radar Sonar Navig. 2000, 147, 114–120. [Google Scholar] [CrossRef]
- Walker, D. Doppler modelling of radar sea clutter. IEE Proc. Radar Sonar Navig. 2002, 148, 73–80. [Google Scholar] [CrossRef]
- Greco, M.; Boredoni, F.; Gini, F. X-band sea-clutter nonstationarity: Influence of long waves. IEEE J. Ocean. Eng. 2004, 29, 269–283. [Google Scholar] [CrossRef]
- Ward, K.D.; Watts, S. Use of sea clutter models in radar design and development. IET Radar Sonar Navig. 2010, 4, 146–157. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhang, Y.S.; Li, Q.L.; Wu, J.J. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms. Acta Phys. Sin. 2018, 67, 034101. [Google Scholar] [CrossRef]
- Watts, S. Modeling and simulation of coherent sea clutter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3303–3317. [Google Scholar] [CrossRef]
- Watts, S.; Rosenberg, L.; Bocquet, S.; Ritchie, M. Doppler spectra of medium grazing angle sea clutter; part 1: Characterisation. IET Radar Sonar Navig. 2016, 10, 24–31. [Google Scholar] [CrossRef]
- Watts, S.; Rosenberg, L.; Bocquet, S.; Ritchie, M. Doppler spectra of medium grazing angle sea clutter; part 2: Model assessment and simulation. IET Radar Sonar Navig. 2016, 10, 32–42. [Google Scholar] [CrossRef]
- Rosenberg, L. Characterization of high grazing angle X-band sea-clutter doppler spectra. IEEE Trans. Aerosp. Electron. Syst. 2013, 50, 406–417. [Google Scholar] [CrossRef]
- Rosenberg, L.; Watts, S.; Greco, M.S. Modeling the Statistics of Microwave Radar Sea Clutter. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 44–75. [Google Scholar] [CrossRef]
- Rosenberg, L.; Bocquet, S. Comparison of bi-modal coherent sea clutter simulation techniques. IET Radar Sonar Navig. 2019, 13, 1519–1529. [Google Scholar] [CrossRef]
- Rosenberg, L. Parametric Modeling of Sea Clutter Doppler Spectra. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Yurovsky, Y.Y.; Kudryavtsev, V.N.; Chapron, B.; Grodsky, S.A. Modulation of Ka-Band Doppler Radar Signals Backscattered From the Sea Surface. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2931–2948. [Google Scholar] [CrossRef]
- Norland, R.; Loberg, A.-E. A comparison of sea waves in open sea and coastal waters. In Proceedings of the 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559), Beijing, China, 15–18 October 2001; pp. 423–426. [Google Scholar] [CrossRef]
- del-Rey-Maestre, N.; Jarabo-Amores, M.-P.; Mata-Moya, D.; Gomez-del-Hoyo, P.; Bárcena-Humanes, J.-L. Statistical analysis of UHF bistatic radar clutter in coastal scenarios. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; pp. 253–256. [Google Scholar] [CrossRef]
- Fabbro, V.; Biegel, G.; Förster, J.; Poisson, J.B.; Danklmayer, A.; Böhler, C.; Marcellin, J.-P.; Brehm, T.; Gallus, M.; Castanet, L.; et al. Measurements of Sea Clutter at Low Grazing Angle in Mediterranean Coastal Environment. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6379–6389. [Google Scholar] [CrossRef]
- Navarro, W.; Velez, J.C.; Orfila, A.; Lonin, S. A Shadowing Mitigation Approach for Sea State Parameters Estimation Using X-Band Remotely Sensing Radar Data in Coastal Areas. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6292–6310. [Google Scholar] [CrossRef]
- Kinsman, B. Some evidence on the effect of nonlinearity on the position of the equilibrium range in wind-wave spectra. J. Geophys. Res. 1961, 66, 2411–2415. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Polarization | HH |
PRF | 1000 Hz |
Frequency | 456 MHz |
Elevation angle | −4° |
Pulse width | 10 us (0.4 us compressed) |
Resolution | 60 m |
Height | 430 m |
Grazing angles | 2° to 8° |
Oceanic Parameters | Value |
---|---|
Wind speed (m/s) | 0.1–15 |
SWH (m) | 0.1–3.0 |
Wave/wind direction (°) | up wave/up wind () |
cross wave/cross wind ( and ) | |
down wave/downwind () oblique-cross wave/wind (other values of ) |
Condition of Sea Surface | Parameters | Number of Datasets |
---|---|---|
Sea state | 1st | 1911 |
2nd | 5654 | |
3rd | 1986 | |
4th | 160 | |
5th | 11 | |
Wave direction | up wave | 2252 |
down wave | 73 | |
cross wave | 1044 | |
oblique-cross wave | 6353 |
Sea States | Probability of Bimodal Spectra (%) | (dB) | (dB) | (Hz) | (Hz) | (Hz) | |
---|---|---|---|---|---|---|---|
1st sea state | Up wave | 22.68 | 43.43 | 37.28 | 0.98 | −1.95 | 5.49 |
Oblique-cross wave | 30.58 | 44.13 | 37.29 | −0.98 | 0.98 | 4.97 | |
Cross wave | 27.08 | 44.78 | 36.00 | 1.91 | 0.10 | 5.20 | |
2nd sea state | Up wave | 20.52 | 46.28 | 37.98 | 2.64 | 0.00 | 6.97 |
Oblique-cross wave | 21.11 | 46.19 | 36.86 | 0.72 | 1.14 | 5.96 | |
Cross wave | 22.28 | 46.91 | 35.29 | −1.95 | 0.00 | 6.32 | |
3rd sea state | Up wave | 7.95 | 48.32 | 38.02 | 5.41 | 11.72 | 8.12 |
Oblique-cross wave | 4.78 | 47.98 | 45.11 | 2.31 | 3.29 | 6.25 | |
Cross wave | 4.36 | 47.64 | 41.27 | −1.56 | 1.17 | 5.14 | |
4th sea state | Up wave | 2.35 | 55.13 | 44.20 | 11.21 | 18.69 | 9.77 |
Oblique-cross wave | 1.10 | 47.48 | 40.61 | 6.18 | 15.95 | 9.94 | |
5th sea state | Up wave | 0.74 | 63.56 | 52.29 | 12.83 | 22.42 | 11.87 |
Sea States | Fitting Curve Formula | ||||
---|---|---|---|---|---|
a | b | c | d | ||
Up wave direction | 1st | −0.11 | 1.19 | −0.65 | 6.23 |
2nd | −0.21 | 2.59 | −0.39 | 4.93 | |
3rd | −0.50 | 7.73 | −0.27 | 4.81 | |
4th | −0.81 | 13.79 | −0.14 | 4.18 | |
5th | −1.16 | 18.50 | −0.004 | 5.20 |
(°) | (°) | Fitting Curve Formula | |||
---|---|---|---|---|---|
60th range bin, 6.8° | Up wave | 5.57 | −1.89 | 1.36 | 1.42 |
Cross wave (20–40°) | 4.37 | −1.47 | 1.36 | 1.42 | |
Cross wave (40–60°) | 3.89 | −1.23 | 1.36 | 1.42 | |
Cross wave (60–80°) | 2.52 | −1.87 | 0.84 | 1.41 | |
Cross wave (80–90°) | 0 | 0 | 0.84 | 1.41 | |
100th range bin, 4.1° | Up wave | 7.51 | −2.48 | 0.84 | 2.75 |
Cross wave (20–40°) | 6.80 | −2.73 | 0.76 | 2.62 | |
Cross wave (40–60°) | 5.91 | −1.78 | 0.58 | 2.66 | |
Cross wave (60–80°) | 4.97 | −3.62 | 0.28 | 3.29 | |
Cross wave (80–90°) | 0 | 0 | 0.19 | 2.84 |
(°) | (°) | Fitting Curve Formula | |||
---|---|---|---|---|---|
100th range bin, 4.1° | up wave | 1.16 | −0.44 | 0.055 | 3.39 |
oblique-cross wave | 0.42 | −0.71 | 0.036 | 3.11 | |
cross wave | −0.24 | −2.03 | −0.18 | 3.93 | |
down wave | −3.58 | 2.02 | 0.014 | 3.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Wu, Z.; Zhang, Y.; Zhang, J.; Xu, X.; Wu, J. Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles. J. Mar. Sci. Eng. 2023, 11, 1901. https://doi.org/10.3390/jmse11101901
Zhao P, Wu Z, Zhang Y, Zhang J, Xu X, Wu J. Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles. Journal of Marine Science and Engineering. 2023; 11(10):1901. https://doi.org/10.3390/jmse11101901
Chicago/Turabian StyleZhao, Peng, Zhensen Wu, Yushi Zhang, Jinpeng Zhang, Xinyu Xu, and Jiaji Wu. 2023. "Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles" Journal of Marine Science and Engineering 11, no. 10: 1901. https://doi.org/10.3390/jmse11101901
APA StyleZhao, P., Wu, Z., Zhang, Y., Zhang, J., Xu, X., & Wu, J. (2023). Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles. Journal of Marine Science and Engineering, 11(10), 1901. https://doi.org/10.3390/jmse11101901