Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes spp., in a Large Indoor Experimental Aquarium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish
2.2. Experimental Conditions
2.3. TS Data Collection and Calculation
2.4. Relationship between TS and FL
2.5. Swimming Angle
3. Results
3.1. TSmean and TSmax
3.2. TS–FL Relationship
3.3. Swimming Angle
4. Discussion
4.1. Swimming Behavior of Sandeel
4.2. Measured TS
4.3. Estimated TS–FL Formula in This Study
4.4. Theoretical and Measured TS Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muto, N.; Yamada, M. Variations in otolith morphology of three species of Ammodytes (Perciformes: Ammodytidae) from the Sea of Okhotsk coast of Hokkaido, Japan. Jpn. J. Ichthyol. 2019, 66, 101–108. [Google Scholar] [CrossRef]
- Kai, Y. Review of recent taxonomic studies of genus Ammodytes. Nippon Suisan Gakkaishi 2019, 85, 511. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.B.; Pierce, G.J.; Learmonth, J.A.; Reid, R.J.; Ross, H.M.; Patterson, I.A.P.; Reid, D.G.; Ross, H.M.; Patterson, I.A.P.; Reid, D.G.; et al. Variability in the diet of harbor porpoise (Phocoena phocoena) in Scottish waters 1992–2003. Mar. Mammal Sci. 2004, 20, 1–27. [Google Scholar] [CrossRef]
- Frederiksen, M.; Furness, R.W.; Wanless, S. Regional variation in the role of bottom-up and top-down processes in controlling sandeel abundance in the North Sea. Mar. Ecol. Prog. Ser. 2007, 337, 279–286. [Google Scholar] [CrossRef]
- Nagashima, H. A Japanese Sand Lance Fishery and its Resource Economics: Full statistics in Japan, the Position of Miyagi Prefecture and A Problem on Management in Miyagi Prefecture. Bull. Miyagi Prefect. Fish. Res. Dev. Cent. 2000, 16, 3–19. Available online: https://agriknowledge.affrc.go.jp/RN/2010890527.pdf (accessed on 11 July 2022).
- Hashimoto, H. Fisheries and Resources of Sandeel (Ammodytes personatus) in Sendai Bay. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 1989, 28, 93–101. Available online: https://agriknowledge.affrc.go.jp/RN/2030450286.pdf (accessed on 11 July 2022).
- Saeki, M.; Inada, M.; Onodera, T.; Onodera, K. The situation of resources of the sand lance in Sendai Bay with long-term weather and sea conditions change. Miyagi Prefect. Rep. Fish. Sci. 2017, 17, 17–27. Available online: https://agriknowledge.affrc.go.jp/RN/2030921660 (accessed on 11 July 2022).
- Yamada, H.; Kuno, M. Effects of Water Temperature and Photoperiod on Maturation in the Ise Bay Population of Japanese Sand Lance Ammodytes personatus. Bull. Jpn. Soc. Fish. Oceanogr. 1999, 63, 14–21. Available online: https://agriknowledge.affrc.go.jp/RN/2010592497.pdf (accessed on 11 July 2022).
- Funakoshi, S.; Nakamura, M.; Yanagibashi, S.; Tomiyama, M. Studies on the reproduction mechanisms of Japanese sandeel for the basis of the resource management system for Ikanago fisheries in and around Ise Bay. Aichi Fish. Res. Inst. Res. Rep. 1997, 4, 11–22. Available online: https://www.pref.aichi.jp/uploaded/attachment/6749.pdf (accessed on 11 July 2022).
- Yamada, H.; Nishimura, A.; Tsuchihashi, Y.; Kuno, M. Nutritional Condition and Reproductive Potential of Sand Lance Ammodytes personatus in Ise Bay. Bull. Jpn. Soc. Fish. Oceanogr. 1999, 63, 22–29. Available online: https://agriknowledge.affrc.go.jp/RN/2030592498.pdf (accessed on 11 July 2022).
- Yamada, H. Studies on the Mechanisms of Recruitment Determination of Japanese Sand Lance Ammodytes personatus in Ise Bay. Bull. Mie Prefect. Fish. Res. Inst. 2011, 19, 1–77. Available online: https://agriknowledge.affrc.go.jp/RN/2030812332 (accessed on 11 July 2022).
- Nagashima, H.; Murase, H.; Yonezake, S.; Matukura, R.; Minami, K.; Nagaki, T.; Kawahara, S.; Miyashita, K. Species Identification of Prey Fish Schools for Minke Whale in Sendai Bay Using Acoustic Descriptors and Environmental Information. Miyagi Prefect. Rep. Fish. Sci. 2008, 8, 15–25. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902201810773186 (accessed on 11 July 2022).
- Onodera, K.; Nagashima, H.; Matsukura, R.; Miyashita, K.; Murase, H. Echosounder survey on adult sand lance in Sendai Bay in spring from 2007 to 2009. Miyagi Prefect. Rep. Fish. Sci. 2011, 11, 87–90. Available online: https://agriknowledge.affrc.go.jp/RN/2030832743 (accessed on 11 July 2022).
- Kobayashi, K.; Zhu, Y.; Oshiyama, D.; Minami, K.; Shirakawa, H.; Miyashita, K. Development of a Biomass Assessment Method Using Fisheries Echo Sounder for Monitoring Whitebait Fishery in Shizuoka Prefecture, Japan. J. Mar. Sci. Technol. 2021, 29, 168–174. [Google Scholar] [CrossRef]
- Zhu, Y.; Minami, K.; Iwahara, Y.; Oda, K.; Hidaka, K.; Hoson, O.; Morishita, K.; Tsuru, S.; Hirota, M.; Shirakawa, H.; et al. Seasonal dynamics in fish distribution and abundance revealed by an acoustic survey in coastal waters of the Suzu Area, Kochi Prefecture, Japan. J. Mar. Sci. Technol. 2021, 29, 146–157. [Google Scholar] [CrossRef]
- Hirose, M.; Mukai, T.; Hwang, D.; Iida, K. Target strength measurements on tethered live jellyfish Nemopilema nomurai. Nippon Suisan Gakkaishi 2005, 71, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, J.; MacLennan, D.N. Fisheries Acoustics-Theory and Practice, 2nd ed.; McClanahan, F., Castilla, J.C., Eds.; Blackwell Publishing: Oxford, UK, 2005; Volume 6, pp. 217–255. ISBN 978−0−632−05994−2. [Google Scholar]
- Kawauchi, Y.; Minami, K.; Shirakawa, H.; Miyashita, K.; Iwahara, Y.; Tomiyasu, M.; Kobayashi, M.; SFurusawa, T.; Shao, H.; Nakagawa, M. Target strength measurement of free-swimming jack mackerel using an indoor large experiment tank. Nippon Suisan Gakkaishi 2019, 85, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Iida, K.; Mukai, T. Diurnal Changes of Area Backscattering Coefficient during the Acoustic Survey of Walleye Pollock. Nippon Suisan Gakkaishi 1999, 65, 252–259. [Google Scholar] [CrossRef]
- Mukai, T. Studies on acoustic target strength of fish and zooplankton. Nippon Suisan Gakkaishi 2004, 70, 667–670. [Google Scholar] [CrossRef]
- Matsukura, R.; Sawada, K.; Abe, K.; Minami, K.; Nagashima, H.; Yonezaki, S.; Murase, H.; Miyashita, K. Comparison of measurements and model calculations of target strength of juvenile sandeel in Sendai Bay. Nippon Suisan Gakkaishi 2013, 79, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, E. Target strength of sandeels. ICES Doc. 1986, 5, 1–5. [Google Scholar]
- Kubilius, R.; Ona, E. Target strength and tilt-angle distribution of the lesser sandeel (Ammodytes marinus). ICES J. Mar. Sci. 2012, 69, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Akai, N.; Utsumi, N. Effects of high water temperature rearing in the estivation period on the mortality and reproduction of Japanese sand lance Ammodytes personatus in the Seto Inland Sea. Nippon Suisan Gakkaishi 2012, 78, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Sawada, K. Study on the Precise Estimation of the Target Strength of Fish. Bull. Fish. Res. Agency 2002, 2, 47–122. Available online: https://agriknowledge.affrc.go.jp/RN/2010651111.pdf (accessed on 11 July 2022).
- Francios, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 1982, 72, 1879–1890. [Google Scholar] [CrossRef]
- Safruddin; Kawauchi, Y.; Ito, Y.; Minami, K.; Itaya, K.; Maeda, K.; Matsukura, R.; Abe, K.; Yasuma, H.; Miyashita, K. Tilt Angle and Theoretical Target Strength of the Japanese Sandeel, Ammodytes personatus, Captured on the Northern Coast of Hokkaido. J. Mar. Acoust. Soc. Jpn. 2013, 40, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Minami, K.; Shirakawa, H.; Kawauchi, Y.; Shao, H.; Tomiyasu, M.; Iwahara, Y.; Tsuda, Y.; Takahara, H.; Zhu, Y.; Miyashita, K. Estimating target strength of young chum salmon (Oncorhynchus keta). Can. J. Fish. Aquat. Sci. 2021, 79, 2. [Google Scholar] [CrossRef]
- Medwin, H.; Clay, C.S. Fundamentals of acoustical oceanography. In Applications of Modern Acoustics; Stern, R., Levy, M., Eds.; Academic Press: San Diego, CA, USA, 1988; pp. 138–143. ISBN 0−12−487570−X. [Google Scholar]
- Yilmaz, Ö. Seismic Data Processing; Society of Exploration Geophysicists: Tulsa, OK, USA, 1987; pp. 837–1000. ISBN 0−93183−040−0. [Google Scholar]
- Mitson, R.B. Fisheries Sonar; Fishing News Books: Surrey, UK, 1983; pp. 156–169. ISBN 0−85238−124−7. [Google Scholar]
- Simmonds, E.J.; WiIIiamson, N.J.; Gerlotto, F.; Aglen, A. Acoustic survey design and analysis procedure, a comprehensive review of current practice. ICES Coop. Res. Rep. 1992, 94–95, 187. Available online: http://ices.dk (accessed on 11 July 2022).
- Furusawa, M.; Miyanohara, Y. Application of echo-trace analysis to estimation of behavior and target strength of fish. J. Acoust. Soc. Jpn. 1988, 9, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Miyanohana, Y.; Ishii, K.; Furusawa, M. Measurements and analyses of dorsal-aspect target strength of six species of fish at four frequencies. Rapp. Procès-Verbaux Des Reun. 1990, 189, 317–324. Available online: https://www.ices.dk/sites/pub/Pages/default.aspx (accessed on 11 July 2022).
- Furusawa, M. Quantitative echo sounder and its development. J. Mar. Acoust. Soc. Jpn. 2019, 75, 669–676. [Google Scholar] [CrossRef]
- Furusawa, M.; Amakasu, K. The analysis of echotrace was obtained by a split-beam echosounder to observe the tilt-angle dependence of fish target strength in situ. ICES J. Mar. Sci. 2010, 67, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Henderson, M.J.; Horne, J.K.; Towler, R.H. The influence of beam position and swimming direction on fish target strength. ICES J. Mar. Sci. 2008, 65, 226–237. [Google Scholar] [CrossRef]
- Ida, H. Fishes of the family Ammodytidae of the world. Nippon Suisan Gakkaishi 2019, 85, 510. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.W. Is tilting behaviour at low swimming speeds unique to negatively buoyant fish? Observations on steelhead trout, Oncorhynchus mykiss, and bluegill, Lepomis macrochirus. J. Fish Biol. 1993, 43, 687–694. [Google Scholar] [CrossRef]
- Weihs, D. Mechanically efficient swimming techniques for fish with negative buoyancy. J. Mar. Res. 1973, 31, 194–209. Available online: https://www.researchgate.net/publication/284548959 (accessed on 11 July 2022).
- Okano, S.; Mitsunaga, Y.; Sakamoto, W.; Kumai, H. Study on swimming behavior of cultured Pacific Bluefin tuna using biotelemetry. Mem. Fac. Agric. Kinki Univ. 2006, 39, 79–82. Available online: https://agriknowledge.affrc.go.jp/RN/2030730624.pdf (accessed on 11 July 2022).
- Furusawa, M. Study on Echo Sounding for Estimating Fisheries Resources. Bull. Natl. Res. Inst. Fish. Eng. 1990, 11, 173–249. Available online: https://agriknowledge.affrc.go.jp/RN/2010460577.pdf (accessed on 11 July 2022).
- Takashima, T. Target strength of live arabesque greenling Pleurogrammus azonus suspended in the sea. Sci. Rep. Hokkaido Fish. Exp. Stn. 2006, 70, 73–80. Available online: https://agriknowledge.affrc.go.jp/RN/2030734444.pdf (accessed on 11 July 2022).
- Yasuma, H.; Sawada, K.; Miyashita, K.; Aoki, I. Swimbladder Morphology and Target Strength of Myctophid Fishes in the Northwestern Pacific. J. Mar. Acoust. Soc. Jpn. 2008, 35, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Yasuma, H.; Nakagawa, R.; Yamakawa, T.; Miyashita, K.; Aoki, I. Density and sound-speed contrasts, and target strength of Japanese sandeel Ammodytes personatus. Jpn. Soc. Fish. Sci. 2009, 75, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Lavery, A.C.; Stanton, T.K.; McGehee, D.E.; Chu, D. Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton. J. Acoust. Soc. Am. 2001, 111, 1197–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadayasu, K.; Abe, K.; Sawada, K.; Takao, Y.; Mukai, T.; Iida, K. Influence of Body Bend by Swimming Activity on Fish Target Strength. J. Mar. Acoust. Soc. Jpn. 2005, 32, 30–39. [Google Scholar] [CrossRef]
- Satoi, D.; Hagiwara, M.; Uemoto, A.; Nakadai, H. Unified Motion Planner for Fishes with Various Swimming Styles. ACM Trans. Graph. 2016, 35, 1–15. [Google Scholar] [CrossRef]
- Kusakabe, T.; Nakajima, M.; Sano, M.; Watanabe, K. The Influence of Light Intensity on the Vertical Distribution and Feeding of Japanese Sand Lance Ammodytes personatus Larvae in Osaka Bay. Nippon Suisan Gakkaishi 2000, 66, 713–718. [Google Scholar] [CrossRef]
- Nakatani, Y.; Tabeta, S.; Nakamura, Y.; Yoshida, T. Development of Simulator to Manage the Boat Seine Fishery for Japanese Sand Lance (Ammodytes personatus) in the Eastern Seto Inland Sea. Jpn. Soc. Civ. Eng. Ser. B2 Coast. Eng. 2013, 69, 1196–1200. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Endo, A.; Iwasaki, N.; Tomiyama, T.; Shibata, J.; Yamaguchi, S.; Nakaguchi, K. Estivation grounds of the sand lance Ammodytes japonicus (Ammoditidae) in the Mihara Strait, mid-western Seto Inland Sea, Japan. Bull. Hiroshima Univ. Mus. 2018, 10, 19–27. [Google Scholar] [CrossRef]
- Kang, M.; Furusawa, M.; Miyashita, K. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES J. Mar. Sci. 2002, 59, 794–804. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Horne, J.K.; Parker-Stetter, S.L.; Keister, J.E. Acoustic classification of coexisting taxa in a coastal ecosystem. Fish. Res. 2015, 172, 130–136. [Google Scholar] [CrossRef] [Green Version]
Start Date | End Date | Number of Specimens | Mean Body Size of Specimens (Lmean, cm) |
---|---|---|---|
26 June 2017 | 27 June 2017 | 20 | 13.5 |
28 June 2017 | 29 June 2017 | 19 | 20.0 |
29 June 2017 | 30 June 2017 | 22 | 17.0 |
30 June 2017 | 3 July 2017 | 20 | 15.0 |
3 July 2017 | 4 July 2017 | 14 | 19.0 |
15 June 2021 | 16 June 2021 | 11 | 21.5 |
17 June 2021 | 18 June 2021 | 20 | 19.5 |
19 June 2021 | 20 June 2021 | 20 | 16.5 |
20 June 2021 | 21 June 2021 | 20 | 17.5 |
22 June 2021 | 23 June 2021 | 20 | 18.5 |
Transducer | T–178 | T–182 |
Frequency (kHz) | 38 | 120 |
−3 dB beam width (degree) | 8.4 | 8.2 |
Transducer type | Split beam | |
Pulse length (ms) | 0.3 | |
Pulse width (ms) | 0.6 | |
Ping interval (s) | 0.2 | |
Recording range (m) | 10.0 |
− | Analysis Range (Lower Threshold, dB) | Analysis Range (Upper Threshold, dB) | TSmean (dB) | TSmax (dB) | |||
---|---|---|---|---|---|---|---|
38 kHz | 120 kHz | 38 kHz & 120 kHz | 38 kHz | 120 kHz | 38 kHz | 120 kHz | |
13.5 | −76.0 | −87.0 | −45.0 | −62.9 | −74.4 | −61.1 | −56.7 |
15.0 | −79.0 | −85.0 | −45.0 | −64.8 | −66.1 | −60.2 | −55.5 |
16.5 | −79.0 | −87.0 | −45.0 | −56.7 | −61.5 | −52.7 | −50.6 |
17.0 | −79.0 | −87.0 | −45.0 | −60.4 | −72.7 | −56.9 | −54.5 |
17.5 | −77.0 | −85.0 | −45.0 | −54.2 | −65.1 | −45.4 | −49.6 |
18.5 | −73.0 | −86.0 | −45.0 | −54.5 | −62.4 | −49.2 | −50.3 |
19.0 | −77.0 | −85.0 | −45.0 | −53.6 | −60.8 | −45.1 | −50.5 |
19.5 | −83.0 | −84.0 | −45.0 | −56.5 | −58.9 | −48.7 | −48.6 |
20.0 | −78.0 | −84.0 | −45.0 | −55.3 | −63.3 | −46.9 | −45.2 |
21.5 | −78.0 | −86.0 | −45.0 | −54.2 | −57.6 | −47.1 | −47.4 |
Reference | Method | Species | FL (cm) | Frequency (kHz) | TSmean | |
---|---|---|---|---|---|---|
a | b (TScm) | |||||
this study | Free-swimming | Ammodytes spp. | 13.5–21.5 | 38 | 53.7 | −124.3 |
120 | 71.3 | −153.2 | ||||
38 | 20.0 | −82.2 | ||||
120 | 20.0 | −89.2 | ||||
Safraddin et al. | Theoretical calculation (DWBA model) | A. personatus | 16.1–28.7 | 38 | 8.2 | −74.2 |
120 | 20.9 | −92.6 | ||||
Yasuma et al. | Theoretical calculation (DCM model) | A. personatus | 3.4–6.7 | 38 | 56.5 | −125.1 |
120 | 34.0 | −98.2 | ||||
7.5–11.5 | 38 | 20.0 | −89.2 | |||
120 | 20.7 | −92.1 | ||||
Matsukura et al. | Theoretical calculation (DWBA model) | A. personatus | 3.1–7.7 | 38 | 46.5 | −118.6 |
120 | 34.3 | −96.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Mizutani, K.; Minami, K.; Shirakawa, H.; Kawauchi, Y.; Shao, H.; Tomiyasu, M.; Iwahara, Y.; Tamura, T.; Ogawa, M.; et al. Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes spp., in a Large Indoor Experimental Aquarium. J. Mar. Sci. Eng. 2022, 10, 966. https://doi.org/10.3390/jmse10070966
Zhu Y, Mizutani K, Minami K, Shirakawa H, Kawauchi Y, Shao H, Tomiyasu M, Iwahara Y, Tamura T, Ogawa M, et al. Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes spp., in a Large Indoor Experimental Aquarium. Journal of Marine Science and Engineering. 2022; 10(7):966. https://doi.org/10.3390/jmse10070966
Chicago/Turabian StyleZhu, Yanhui, Kosuke Mizutani, Kenji Minami, Hokuto Shirakawa, Yohei Kawauchi, Huamei Shao, Makoto Tomiyasu, Yuka Iwahara, Tsutomu Tamura, Masahiro Ogawa, and et al. 2022. "Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes spp., in a Large Indoor Experimental Aquarium" Journal of Marine Science and Engineering 10, no. 7: 966. https://doi.org/10.3390/jmse10070966
APA StyleZhu, Y., Mizutani, K., Minami, K., Shirakawa, H., Kawauchi, Y., Shao, H., Tomiyasu, M., Iwahara, Y., Tamura, T., Ogawa, M., Tatsuyama, K., & Miyashita, K. (2022). Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes spp., in a Large Indoor Experimental Aquarium. Journal of Marine Science and Engineering, 10(7), 966. https://doi.org/10.3390/jmse10070966