Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa
Abstract
1. Introduction
2. Breeding for Enhanced Nutritional Quality
2.1. Simultaneous Improvement of Nutritional Quality Traits
2.2. Breeding for PVA and Non-PVA Carotenoids
2.3. Breeding for PVA and Protein
2.4. Impact of Processing Methods on Degradation and Losses of Micronutrient Content
2.5. Association of PVA with Reduced Aflatoxin
3. Genomic-Enhanced Improvement
3.1. Assessment of Genetic Variation of Carotenoids
3.2. Population Improvement through MARS
3.3. Forward Breeding Using Trait-Linked Molecular Markers
4. Discovery and Validation of Markers
5. Prospect and Perspective
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Menkir, A.; Badu-Apraku, B.; Ajala, S. Maize Genetic Improvement for enhanced productivity gains in West and Central Africa. R4D Rev. 2012, 6–10. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Pixley, K.; Palacios Rojas, N.; Babu, R.; Mutale, R.; Surles, R.; Simpungwe, E. Biofortification of Maize with Provitamin A Carotenoids. In Carotenoids and Human Health (Nutrition and Health); Tanumihardjo, S.A., Ed.; Springer Science + Business Media: Totowa, NJ, USA, 2013; pp. 271–292. [Google Scholar]
- Dubiela, C.; Montecelli, T.D.N.; Lazzari, F.; Souto, E.R.d.; Schuster, I. Development and validation of SNP assays for the selection of resistance to Meloidogyne incognita in soybean. Crop Breed. Appl. Biotechnol. 2019, 19, 102–109. [Google Scholar] [CrossRef]
- HarvestPlus. Biofortification Progress Briefs. Available online: www.harvestplus.org (accessed on 1 February 2024).
- Dwivedi, S.L.; Garcia-Oliveira, A.L.; Govindaraj, M.; Ortiz, R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. Front. Plant Sci. 2023, 14, 1119148. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Palacios-Rojas, N.; Hossain, F.; Muthusamy, V.; Menkir, A.; Dhliwayo, T.; Ndhlela, T.; San Vicente, F.; Nair, S.K.; Vivek, B.S.; et al. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2020, 10, 1392. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Anderson, C.; Kaufer-Horwitz, M.; Bode, L.; Emenaker, N.J.; Haqq, A.M.; Satia, J.A.; Silver, H.J.; Stadler, D.D. Poverty, obesity, and malnutrition: An international perspective recognizing the paradox. J. Am. Diet. Assoc. 2007, 107, 1966–1972. [Google Scholar] [CrossRef]
- Chadare, F.J.; Affonfere, M.; Aidé, E.S.; Fassinou, F.K.; Salako, K.V.; Pereko, K.; Deme, B.; Failler, P.; Kakaï, R.L.G.; Assogbadjo, A.E. Current state of nutrition in West Africa and projections to 2030. Glob. Food Secur. 2022, 32, 100602. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food Nutr. Bull. 2011, 32, S31–S40. [Google Scholar] [CrossRef]
- Menkir, A.; Liu, W.; White, W.S.; Maziya-Dixon, B.; Rocheford, T. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 2008, 109, 521–529. [Google Scholar] [CrossRef]
- Palacios-Rojas, N.; McCulley, L.; Kaeppler, M.; Titcomb, T.J.; Gunaratna, N.S.; Lopez-Ridaura, S.; Tanumihardjo, S.A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1809–1834. [Google Scholar] [CrossRef]
- Basnet, B.; Khanal, S. Quantitative trait loci and candidate genes for iron and zinc bio-fortification in genetically diverse germplasm of maize (Zea mays L): A systematic review. Heliyon 2022, 8, e12593. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, J.; Chen, J.; Zhu, L.; Zhao, Y.; Huang, Y. The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed. Sci. 2013, 63, 317–324. [Google Scholar] [CrossRef]
- Lung’aho, M.G.; Mwaniki, A.M.; Szalma, S.J.; Hart, J.J.; Rutzke, M.A.; Kochian, L.V.; Glahn, R.P.; Hoekenga, O.A. Genetic and Physiological Analysis of Iron Biofortification in Maize Kernels. PLoS ONE 2011, 6, e20429. [Google Scholar] [CrossRef]
- Menkir, A.; Rocheford, T.; Maziya-Dixon, B.; Tanumihardjo, S. Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize. Euphytica 2015, 205, 203–217. [Google Scholar] [CrossRef]
- Menkir, A.; Dieng, I.; Mengesha, W.; Meseka, S.; Maziya-Dixon, B.; Alamu, O.E.; Bossey, B.; Muhyideen, O.; Ewool, M.; Coulibaly, M.M. Unravelling the Effect of Provitamin A Enrichment on Agronomic Performance of Tropical Maize Hybrids. Plants 2021, 10, 1580. [Google Scholar] [CrossRef]
- FGN; IITA. National Food Consumption and Micronutrient Survey 2021. Preliminary Report, Abuja and Ibadan; Federal Government of Nigeria (FGN): Abuja, Nigeria; The International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 2022; p. 288. [Google Scholar]
- Sun, T.; Li, L. Toward the ‘golden’ era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci. 2020, 290, 110331. [Google Scholar] [CrossRef]
- Menkir, A.; Palacios-Rojas, N.; Alamu, O.; Dias Paes, M.C.; Dhliwayo, T.; Maziya-Dixon, B.; Mengesha, W.; Ndhlela, T.; Oliveira-Guimaraes, P.E.; Pixley, K.; et al. Vitamin A-Biofortified Maize: Exploiting Native Genetic Variation for Nutrient Enrichment. Sci. Brief Biofortification 2018. [Google Scholar]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef]
- Goredema-Matongera, N.; Ndhlela, T.; van Biljon, A.; Kamutando, C.N.; Cairns, J.E.; Baudron, F.; Labuschagne, M. Genetic Variation of Zinc and Iron Concentration in Normal, Provitamin A and Quality Protein Maize under Stress and Non-Stress Conditions. Plants 2023, 12, 270. [Google Scholar] [CrossRef]
- Akhtar, S.; Osthoff, G.; Mashingaidze, K.; Labuschagne, M. Iron and Zinc in Maize in the Developing World: Deficiency, Availability, and Breeding. Crop Sci. 2018, 58, 2200–2213. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Beshir, A.; Lübberstedt, T. Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breed. 2019, 138, 1–28. [Google Scholar] [CrossRef]
- Menkir, A. Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem. 2008, 110, 454–464. [Google Scholar] [CrossRef]
- Maziya-Dixon, B.; Kling, J.G.; Menkir, A.; Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 2000, 21, 419–422. [Google Scholar] [CrossRef]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.; Glahn, R.P. Assessment of Concentrations of Iron and Zinc and Bioavailable Iron in Grains of Early-Maturing Tropical Maize Varieties. J. Agric. Food Chem. 2003, 51, 3688–3694. [Google Scholar] [CrossRef]
- Udo, E.; Abe, A.; Meseka, S.; Mengesha, W.; Menkir, A. Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.). Agronomy 2023, 13, 266. [Google Scholar] [CrossRef]
- Sayadi Maazou, A.-R.S.; Gedil, M.; Adetimirin, V.O.; Meseka, S.; Mengesha, W.; Babalola, D.; Offornedo, Q.N.; Menkir, A. Comparative Assessment of Effectiveness of Alternative Genotyping Assays for Characterizing Carotenoids Accumulation in Tropical Maize Inbred Lines. Agronomy 2021, 11, 2022. [Google Scholar] [CrossRef]
- Motukuri, S.R.K. Quality Protein Maize: An Alternative Food to Mitigate Protein Deficiency in Developing Countries. In Maize-Production and Use; InTechopen: London, UK, 2019. [Google Scholar]
- Goswami, R.; Zunjare, R.U.; Khan, S.; Baveja, A.; Muthusamy, V.; Hossain, F.; Lübberstedt, T. Marker-assisted introgression of rare allele of β-carotene hydroxylase (crtRB1) gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breed. 2019, 138, 174–183. [Google Scholar] [CrossRef]
- Alamu, O.E.; Menkir, A.; Maziya-Dixon, B.; Olaofe, O. Effects of husk and harvest time on carotenoid content and acceptability of roasted fresh cobs of orange maize hybrids. Food Sci. Nutr. 2014, 2, 811–820. [Google Scholar] [CrossRef]
- Mboup, M.; Aduramigba-Modupe, A.; Maazou, A.-R.; Olasanmi, B.; Mengesha, W.; Meseka, S.; Dieng, I.; Bandyopadhyay, R.; Menkir, A.; Ortega-Beltran, A. Performance of testers with contrasting provitamin A content to evaluate provitamin A maize for resistance to Aspergillus flavus infection and aflatoxin production. Front. Plant Sci. 2023, 14, 1167628. [Google Scholar] [CrossRef] [PubMed]
- Suwarno, W.B.; Hannok, P.; Palacios-Rojas, N.; Windham, G.; Crossa, J.; Pixley, K.V. Provitamin A Carotenoids in Grain Reduce Aflatoxin Contamination of Maize While Combating Vitamin A Deficiency. Front. Plant Sci. 2019, 10, 30. [Google Scholar] [CrossRef]
- Savignac, J.-M.; Atanasova, V.; Chereau, S.; Ducos, C.; Gallegos, N.; Ortega, V.; Ponts, N.; Richard-Forget, F. Carotenoids Occurring in Maize Affect the Redox Homeostasis of Fusarium graminearum and Its Production of Type B Trichothecene Mycotoxins: New Insights Supporting Their Role in Maize Resistance to Giberella Ear Rot. J. Agric. Food Chem. 2023, 71, 3285–3296. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Hannoufa, A.; Hossain, Z. Regulation of carotenoid accumulation in plants. Biocatal. Agric. Biotechnol. 2012, 1, 198–202. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef] [PubMed]
- Gedil, M.; Menkir, A. An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa. Front. Plant Sci. 2019, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, O.; Menkir, A.; Gedil, M.; Omidiji, O. Carotenoid and molecular marker-based diversity assessment in tropical yellow endosperm maize inbred lines. J. Food Agric. Environ. 2011, 9, 383–392. [Google Scholar]
- Menkir, A.; Gedil, M.; Tanumihardjo, S.; Adepoju, A.; Bossey, B. Carotenoid accumulation and agronomic performance of maize hybrids involving parental combinations from different marker-based groups. Food Chem. 2014, 148, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Maazou, A.S.; Adetimirin, V.O.; Gedil, M.; Meseka, S.; Mengesha, W.; Menkir, A. Suitability of testers to characterize provitamin a content and agronomic performance of tropical maize inbred lines. Front. Genet. 2022, 13, 955420. [Google Scholar] [CrossRef] [PubMed]
- Menkir, A.; Maziya-Dixon, B.; Mengesha, W.; Rocheford, T.; Alamu, E.O. Accruing genetic gain in pro-vitamin A enrichment from harnessing diverse maize germplasm. Euphytica 2017, 213, 105. [Google Scholar] [CrossRef]
- Ayana, G.T.; Ali, S.; Sidhu, J.S.; Gonzalez Hernandez, J.L.; Turnipseed, B.; Sehgal, S.K. Genome-wide association study for spot blotch resistance in hard winter wheat. Front. Plant Sci. 2018, 9, 926. [Google Scholar] [CrossRef]
- Kebede, D.; Mengesha, W.; Menkir, A.; Abe, A.; Garcia-Oliveira, A.L.; Gedil, M. Marker based enrichment of provitamin A content in two tropical maize synthetics. Sci. Rep. 2021, 11, 14998. [Google Scholar] [CrossRef]
- Iseghohi, I.; Abe, A.; Meseka, S.; Mengesha, W.; Gedil, M.; Menkir, A. Assessing Effect of Marker-Based Improvement of Maize Synthetics on Agronomic Performance, Carotenoid Content, Combining Ability and Heterosis. Agronomy 2020, 10, 1625. [Google Scholar] [CrossRef]
- Yan, J.; Kandianis, C.B.; Harjes, C.E.; Bai, L.; Kim, E.-H.; Yang, X.; Skinner, D.J.; Fu, Z.; Mitchell, S.; Li, Q.; et al. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 2010, 42, 322–327. [Google Scholar] [CrossRef]
- Gowda, M.; Worku, M.; Nair, S.; Palocios-Rojas, N.; Huestis, G.; Prasanna, B.M. Quality Assurance/Quality Control (QA/QC) in Maize Breeding and Seed Production: Theory and Practice; CIMMYT: El Batán, State of Mexico, Mexico, 2017. [Google Scholar]
- Azmach, G.; Gedil, M.; Menkir, A.; Spillane, C. Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol. 2013, 13, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Gebremeskel, S.; Garcia-Oliveira, A.L.; Menkir, A.; Adetimirin, V.; Gedil, M. Effectiveness of predictive markers for marker assisted selection of pro-vitamin A carotenoids in medium-late maturing maize (Zea mays L.) inbred lines. J. Cereal Sci. 2018, 79, 27–34. [Google Scholar] [CrossRef]
- Azmach, G.; Menkir, A.; Spillane, C.; Gedil, M. Genetic Loci Controlling Carotenoid Biosynthesis in Diverse Tropical Maize Lines. Genes. Genomes Genet. 2018, 8, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Babalola, D.; Menkir, A.; Ilesanmi, O.; Obi, Q.; Gedil, M. Short communication: Finetuning molecular markers for efficient selection of vitamin A-rich tropical maize lines in a molecular breeding scheme. J. Cereal Sci. 2021, 97, 103149. [Google Scholar] [CrossRef]
- Livingstone, K.; Anderson, S. Patterns of variation in the evolution of carotenoid biosynthetic pathway enzymes of higher plants. J. Hered. 2009, 100, 754–761. [Google Scholar] [CrossRef]
- Vallabhaneni, R.; Bradbury, L.M.; Wurtzel, E.T. The carotenoid dioxygenase gene family in maize, sorghum, and rice. Arch. Biochem. Biophys. 2010, 504, 104–111. [Google Scholar] [CrossRef]
- Kadam, S.; Lee, D.; Dhiman, P. Genome-Editing Approaches for Biofortification of Cereal Crops. In Biofortification in Cereals: Progress and Prospects; Deshmukh, R., Nadaf, A., Ansari, W.A., Singh, K., Sonah, H., Eds.; Springer Nature: Singapore, 2023; pp. 93–126. [Google Scholar]
- Ahmad, H.M.; Iqbal, M.S.; Abdullah, M.; El-Tabakh, M.A.M.; Oranab, S.; Mudassar, M.; Shimira, F.; Zahid, G. Recent Trends in Genome Editing Technologies for Agricultural Crop Improvement. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 357–379. [Google Scholar]
- Aggarwal, B.; Vats, S.; Kaushal, L.; Singh, A.; Padalkar, G.; Yadav, H.; Kumar, V.; Sinha, S.; Umate, S.M. Biofortification of Maize (Zea mays). In Biofortification in Cereals: Progress and Prospects; Deshmukh, R., Nadaf, A., Ansari, W.A., Singh, K., Sonah, H., Eds.; Springer Nature: Singapore, 2023; pp. 209–233. [Google Scholar]
- Augustine, R.; Kalyansundaram, D. Agronomic biofortification through micronutrient management in maize: A review. J. Appl. Nat. Sci. 2020, 12, 430–437. [Google Scholar] [CrossRef]
- Dragičević, V.; Brankov, M.; Stoiljković, M.; Tolimir, M.; Kanatas, P.; Travlos, I.; Simić, M. Kernel color and fertilization as factors of enhanced maize quality. Front. Plant Sci. 2022, 13, 1027618. [Google Scholar] [CrossRef] [PubMed]
- Prom-u-thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Guo, S.; Kaur, C.; Naeem, A.; Yamuangmorn, S.; et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Yadav, P.; Chinnusamy, V. Nutrigenomics in Cereals. In Biofortification in Cereals: Progress and Prospects; Springer: Berlin/Heidelberg, Germany, 2023; pp. 311–345. [Google Scholar]
- Msungu, S.D.; Mushongi, A.A.; Venkataramana, P.B.; Mbega, E.R. A review on the trends of maize biofortification in alleviating hidden hunger in sub-Sahara Africa. Sci. Hortic. 2022, 299, 111029. [Google Scholar] [CrossRef]
- Srivastav, P.; Vutukuru, M.; Ravindran, G.; Awad, M.M. Biofortification—Present Scenario, Possibilities and Challenges: A Scientometric Approach. Sustainability 2022, 14, 11632. [Google Scholar]
- Bouis, H.E.; Welch, R.M. Biofortification—A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition in the Global South. Crop Sci. 2010, 50, S-20. [Google Scholar] [CrossRef]
- Virk, P.S.; Andersson, M.S.; Arcos, J.; Govindaraj, M.; Pfeiffer, W.H. Transition From Targeted Breeding to Mainstreaming of Biofortification Traits in Crop Improvement Programs. Front. Plant Sci. 2021, 12, 703990. [Google Scholar] [CrossRef]
IITA Name | Variety Name | Year of Release | Country | Yieldt/ha | PVA (μg/g) | Yd Adv (%) | Cultivar Type |
---|---|---|---|---|---|---|---|
A0905-32 | Ife-Hybrid 4 | 2012 | Nigeria | 5–8 | 7–11 | 16 | SC hybrid |
A0905-28 | Ife-hybrid 3 | 2012 | Nigeria | 6–8 | 7–10 | 27 | SC hybrid |
PVASYN 2 | Sammaz 38 | 2012 | Nigeria | 4–6 | 8–9 | 47 | OPV |
PVASYN 8 | Sammaz 39 | 2012 | Nigeria | 4–6 | 8–10 | 48 | OPV |
PVASYN 6 | CSIR-CRI Honampa | 2012 | Ghana | 4–6 | 8–9 | 42 | OPV |
LY1001-21 | Sammaz 43 | 2015 | Nigeria | 6–9 | 7–10 | 42 | TW hybrid |
LY1001-14 | Sammaz 44 | 2015 | Nigeria | 6–9 | 7–10 | 59 | TW hybrid |
LY1001-10 | Dzifoo | 2015 | Ghana | 6–9 | 7–10 | 45 | TW hybrid |
LY1001-14 | Ahoofe | 2015 | Ghana | 6–9 | 7–10 | 45 | TW hybrid |
PVA SYN-13 | Ahoodzin | 2015 | Ghana | 4–6 | 8–12 | 29 | OPV |
PVASYN 7 | MUIBAKI 1 | 2016 | DRC | 4 | 5–6 | 14 | OPV |
PVASYN 9 | MUIBAKI 2 | 2016 | DRC | 5 | 6–9 | 25 | OPV |
PVASYN 13 | MUIBAKI 3 | 2016 | DRC | 5.5 | 8–12 | 35 | OPV |
PVASYN 3 | Nafama | 2012 | Mali | 5–6 | 6–8 | 0 | OPV |
PVASYN 13 | Kodialan | 2016 | Mali | 5–7 | 8–12 | 0 | OPV |
PVASYN 21 | Dakan | 2016 | Mali | 7–8 | 6–7 | 40–60 | OPV |
LY1001-18 | Abebe | 2016 | Mali | 9–10 | 8–13 | 80–100 | TW hybrid |
LY0905-32 | Duba | 2016 | Mali | 8–9 | 7–10 | 60–80 | TW hybrid |
LY1001-10 | Sammaz 49 | 2016 | Nigeria | 5–8 | 6–11 | 10–29 | TW hybrid |
PVASYN 13 | Sammaz 52 | 2017 | Nigeria | 5–6 | 8–12 | 31–57 | OPV |
LY1501-5 | CRI-Nkwagye | 2018 | Ghana | 8–9 | 10–14 | 36 | TW hybrid |
LY1501-9 | CRI-Abebe | 2018 | Ghana | 8–9 | 11–15 | 47 | TW hybrid |
PVA SYN 6 | NA | 2018 | Cameroon | 4–6 | 8–9 | 10 | OPV |
PVASYN 13 | NA | 2018 | Cameroon | 5–6 | 8–12 | 10 | OPV |
LY1501-8 | SAMMAZ 57 | 2019 | Nigeria | 6–8 | 11–15 | 62–89 | TW hybrid |
PVA HGAF2 | BATA | 2019 | Mali | 8–9 | 7–10 | 60–80 | OPV |
F2SCA1413-36 | SAMMAZ 59 | 2020 | Nigeria | 4–8 | 13–16 | 18 | OPV |
F2SCA1413-12 | SAMMAZ 60 | 2020 | Nigeria | 4–7 | 13–16 | 27 | OPV |
LY1001-23 | ZAMS666A | 2021 | Ghana | 5–8 | 8–10 | 33 | TW hybrid |
LY1409-21 | CRI-Ewool | 2021 | Ghana | 4–7 | 9–14 | 12 | TW hybrid |
LY1501-7 | CRI-Harvestplus | 2021 | Ghana | 5–7 | 10–13 | 9 | TW hybrid |
A1802-4 | SAMMAZ 67 | 2022 | Nigeria | 5–7 | 10–13 | 19 | OPV |
LY1606 | HAKIMI 1 | 2022 | Nigeria | 5–7 | 11–12 | 11 | OPV |
LY1608 | SAMLAK 1608MY | 2022 | Nigeria | 5–7 | 12–13 | 20 | OPV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedil, M.; Mengesha, W.; Ilesanmi, O.; Menkir, A. Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa. Agriculture 2024, 14, 577. https://doi.org/10.3390/agriculture14040577
Gedil M, Mengesha W, Ilesanmi O, Menkir A. Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa. Agriculture. 2024; 14(4):577. https://doi.org/10.3390/agriculture14040577
Chicago/Turabian StyleGedil, Melaku, Wende Mengesha, Oluyinka Ilesanmi, and Abebe Menkir. 2024. "Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa" Agriculture 14, no. 4: 577. https://doi.org/10.3390/agriculture14040577
APA StyleGedil, M., Mengesha, W., Ilesanmi, O., & Menkir, A. (2024). Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa. Agriculture, 14(4), 577. https://doi.org/10.3390/agriculture14040577