Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Manual Data Collection
2.3. Aerial Data Collection
2.4. Statistical Procedure
3. Results and Discussion
3.1. Environmental Considerations
3.2. Morpho-Physiological and Agronomic Characteristics in Well-Watered Regime
3.3. Morpho-Physiological and Agronomic Characteristics in the Drought Regime
3.4. Relationships among Characteristics
3.5. Heritability and Model Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
International Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, M.S. Dryland Farming Research in Ethiopia Review of the Past and Thrust in the Nineties; Institute of Agricultural Research: Addis Ababa, Ethiopia, 1993.
- Stansell, J.; Shepherd, J.; Pallas, J.; Bruce, R.; Minton, N.; Bell, D.; Morgan, L. Peanut responses to soil water variables in the Southeast. Peanut Sci. 1976, 3, 44–48. [Google Scholar] [CrossRef]
- Pahalwan, D.; Tripathi, R. Irrigation scheduling based on evaporation and crop water requirement for summer peanuts. Peanut Sci. 1984, 11, 4–6. [Google Scholar] [CrossRef]
- Naveen, P.; Daniel, K.; Subramanian, P.; Senthil Kumar, P. Response of irrigated groundnut (Arachis hypogaea) to moisture stress and its management. Indian J. Agron. 1992, 37, 82. [Google Scholar]
- Smartt, J. The groundnut in farming systems and the rural economy—A global view. In The Groundnut Crop; Springer: Berlin/Heidelberg, Germany, 1994; pp. 664–699. [Google Scholar]
- Rucker, K.; Kvien, C.; Holbrook, C.; Hook, J. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. 1995, 22, 14–18. [Google Scholar] [CrossRef]
- Prasad, P.; Craufurd, P.; Summerfield, R. Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci. 1999, 39, 1352–1357. [Google Scholar] [CrossRef]
- Reddy, T.; Reddy, V.; Anbumozhi, V. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regul. 2003, 41, 75–88. [Google Scholar] [CrossRef]
- Balota, M. Rainout Shelter-Induced Water Deficit Negatively Impacts Peanut Yield and Quality in a Sub-Humid Environment. Peanut Sci. 2020, 47, 54–65. [Google Scholar] [CrossRef]
- Skelton, B.J.; Shear, G. Calcium translocation in the peanut (Arachis hypogaea L.) 1. Agron. J. 1971, 63, 409–412. [Google Scholar] [CrossRef]
- Wright, G.; Hubick, K.; Farquhar, G. Physiological analysis of peanut cultivar response to timing and duration of drought stress. Aust. J. Agric. Res. 1991, 42, 453–470. [Google Scholar] [CrossRef]
- Kulkarni, J.; Ravindra, V.; Sojitra, V.; Bhatt, D. Growth, nodulation and N-uptake of groundnut (Arachis hypogaea L.) as influenced by water deficit stress at different phenophases. Oleagineux 1988, 43, 415–419. [Google Scholar]
- Devries, J.; Bennett, J.; Albrecht, S.; Boote, K. Water relations, nitrogenase activity and root development of three grain legumes in response to soil water deficits. Field Crops Res. 1989, 21, 215–226. [Google Scholar] [CrossRef]
- Wilson, D.M.; Stansell, J.R. Effect of irrigation regimes on aflatoxin contamination of peanut pods. Peanut Sci. 1983, 10, 54–56. [Google Scholar] [CrossRef]
- Sanders, T.; Cole, R.; Blankenship, P.; Dorner, J. Aflatoxin contamination of peanuts from plants drought stressed in pod or root zones. Peanut Sci. 1993, 20, 5–8. [Google Scholar] [CrossRef]
- Luis, J.M.; Carbone, I.; Payne, G.A.; Bhatnagar, D.; Cary, J.W.; Moore, G.G.; Lebar, M.D.; Wei, Q.; Mack, B.; Ojiambo, P.S. Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus. Mycologia 2020, 112, 908–920. [Google Scholar] [CrossRef]
- Hashim, I.; Koehler, P.; Eitenmiller, R. Tocopherols in runner and Virginia peanut cultivars at various maturity stages. J. Am. Oil Chem. Soc. 1993, 70, 633–635. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture—National Agricultural Statistics Service. 2020. Available online: https://quickstats.nass.usda.gov/ (accessed on 1 February 2020).
- Nigam, S.; Chandra, S.; Sridevi, K.R.; Bhukta, M.; Reddy, A.; Rachaputi, N.R.; Wright, G.; Reddy, P.; Deshmukh, M.; Mathur, R. Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann. Appl. Biol. 2005, 146, 433–439. [Google Scholar] [CrossRef]
- Nigam, S.; Aruna, R. Improving breeding efficiency for early maturity in peanut. Plant Breed. Rev. 2008, 30, 295–322. [Google Scholar]
- Arunyanark, A.; Jogloy, S.; Akkasaeng, C.; Vorasoot, N.; Kesmala, T.; Rao, R.N.; Wright, G.; Patanothai, A. Chlorophyll stability is an indicator of drought tolerance in peanut. J. Agron. Crop Sci. 2008, 194, 113–125. [Google Scholar] [CrossRef]
- Raju, B.R.; Mohankumar, M.V.; Sumanth, K.K.; Rajanna, M.P.; Udayakumar, M.; Prasad, T.G.; Sheshshayee, M.S. Discovery of QTLs for water mining and water use efficiency traits in rice under water-limited condition through association mapping. Mol. Breed. 2016, 36, 35. [Google Scholar] [CrossRef]
- Reynolds, M.; Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 2016, 31, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Sreeman, S.M.; Vijayaraghavareddy, P.; Sreevathsa, R.; Rajendrareddy, S.; Arakesh, S.; Bharti, P.; Dharmappa, P.; Soolanayakanahally, R. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants. Front. Chem. 2018, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Jha, P.K. Is precision agriculture worth it? Yes, may be. J. Biotechnol. Crop Sci. 2020, 9, 4–9. [Google Scholar]
- Rao, N.R.; Talwar, H.; Wright, G. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J. Agron. Crop Sci. 2001, 186, 175–182. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 153–188. [Google Scholar]
- Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [Google Scholar] [CrossRef] [PubMed]
- Blum, A. Plant water relations, plant stress and plant production. In Plant Breeding for Water-Limited Environments; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–52. [Google Scholar]
- Bharadiya, J.P.; Tzenios, N.T.; Reddy, M. Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches. J. Eng. Res. Rep. 2023, 24, 29–44. [Google Scholar]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Wen, W.; Timmermans, J.; Chen, Q.; van Bodegom, P.M. Evaluating crop-specific responses to salinity and drought stress from remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103438. [Google Scholar] [CrossRef]
- Sarkar, S.; Cazenave, A.B.; Oakes, J.; McCall, D.; Thomason, W.; Abbot, L.; Balota, M. High-throughput measurement of peanut canopy height using digital surface models. Plant Phenome J. 2020, 3, e20003. [Google Scholar] [CrossRef]
- Sarkar, S.; Ramsey, A.F.; Cazenave, A.B.; Balota, M. Peanut leaf wilting estimation from RGB color indices and logistic models. Front. Plant. Sci. 2021, 12, 658621. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Cazenave, A.B.; Oakes, J.; McCall, D.; Thomason, W.; Abbott, L.; Balota, M. Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Sci. Rep. 2021, 11, 21661. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Anderson, W.F.; Pittman, R.N. Selection of a core collection from the US germplasm collection of peanut. Crop Sci. 1993, 33, 859–861. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Dong, W. Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci. 2005, 45, 1540–1544. [Google Scholar] [CrossRef]
- Puppala, N.; Nayak, S.N.; Sanz-Saez, A.; Chen, C.; Devi, M.J.; Nivedita, N.; Bao, Y.; He, G.; Wright, D.A.; Pandey, M.K.; et al. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front. Genet. 2023, 14, 1121462. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.S.; Burow, M.D.; Balota, M.; Chagoya, J.; Sarkar, S.; Sung, C.-J.; Payton, M.E.; Wang, N.; Payton, P.; Chamberlin, K.D.; et al. Response to drought stress in a subset of the U.S. peanut mini-core evaluated in Oklahoma, Texas, and Virginia. Peanut Sci. 2022, 23, 71–87. [Google Scholar] [CrossRef]
- Stalker, H.T. Utilizing Wild Species for Peanut Improvement. Crop Sci. 2017, 57, 1102–1120. [Google Scholar] [CrossRef]
- Balota, M. Agronomic Recommendations and Procedures. In Virginia Peanut Production Guide; Balota, M., Ed.; Virginia Cooperative Extension: Blacksburg, VA, USA, 2018; pp. 7–37. [Google Scholar]
- Sarkar, S.; Oakes, J.; Cazenave, A.B.; Burow, M.D.; Bennett, R.S.; Chamberlin, K.D.; Wang, N.; White, M.; Payton, P.; Mahan, J.; et al. Evaluation of the US peanut germplasm mini-core collection in the Virginia-Carolina region using traditional and new high-throughput methods. Agronomy 2022, 12, 1945. [Google Scholar] [CrossRef]
- Luis, J.M.; Ozias-Akins, P.; Holbrook, C.C.; Kemerait, R.C., Jr.; Snider, J.L.; Liakos, V. Phenotyping peanut genotypes for drought tolerance. Peanut Sci. 2016, 43, 36–48. [Google Scholar] [CrossRef]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- Arief, M.A.A.; Kim, H.; Kurniawan, H.; Nugroho, A.P.; Kim, T.; Cho, B.K. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants. Plants 2023, 12, 1387. [Google Scholar] [CrossRef]
- Jakob, T.; Goss, R.; Wilhelm, C. Activation of diadinoxanthin de-epoxidase due to a chiororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol. 1999, 1, 76–82. [Google Scholar] [CrossRef]
- Strasser, R.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 443–480. [Google Scholar]
- Appenroth, K.-J.; Stöckel, J.; Srivastava, A.; Strasser, R. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 2001, 115, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.A. Chlorophyll fluorescence: What is it and what do the numbers mean? In USDA Forest Service Proceeding RMRS; Rocky Mount Research Station: Fort Collins, CO, USA, 2006; pp. 34–42. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kayning, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Trussell, H.J.; Saber, E.; Vrhel, M. Color image processing: Basics and special issue overview. IEEE Signal Process. Mag. 2005, 22, 14–22. [Google Scholar] [CrossRef]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.; Araus, J.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, X.; Wang, H.; Yan, G. A novel method for extracting green fractional vegetation cover from digital images. J. Veg. Sci. 2012, 23, 406–418. [Google Scholar] [CrossRef]
- Kipp, S.; Mistele, B.; Schmidhalter, U. Identification of stay-green and early senescence phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein concentration using high-throughput phenotyping techniques. Funct. Plant Biol. 2014, 41, 227–235. [Google Scholar] [CrossRef]
- Zhou, B.; Elazab, A.; Bort, J.; Vergara, O.; Serret, M.; Araus, J.L. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. 2015, 116, 20–29. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J. Asymptotic nature of grass canopy spectral reflectance. Appl. Opt. 1977, 16, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Allard, A.W. Principles of Plant Breeding; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability of soybean. Agron. J. 1995, 47, 314–318. [Google Scholar] [CrossRef]
- Balota, M.; Isleib, T.G.; Tallury, S. Variability for drought related traits of virginia-type peanut cultivars and advanced breeding lines. Crop Sci. 2012, 52, 2702–2713. [Google Scholar] [CrossRef]
- Chavez, M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013, 64, 3937–3949. [Google Scholar] [CrossRef]
- Lepekhov, S.B. Canopy temperature depression for drought- and heat stress tolerance in wheat breeding. Mainstream Technol. 2022, 26, 196–201. Available online: www.bionet.nsc.ru/vogis/ (accessed on 12 February 2024). [CrossRef]
- Rebetzke, G.J.; Rattey, A.R.; Farquhar, G.D.; Richards, R.A.; Condon, A.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct. Plant Biol. 2013, 40, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Fukai, S.; Mitchell, J. Role of canopy temperature depression in rice. Crop Environ. 2022, 1, 198–213. [Google Scholar] [CrossRef]
- Nautiyal, P.; Rachaputi, N.R.; Joshi, Y. Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Res. 2002, 74, 67–79. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S.; Siddique, K. Drought stress in grain legumes during reproduction and grain filling. J. Agron. Crop Sci. 2017, 203, 81–102. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Schulze, E.D., Caldwell, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; p. 100. [Google Scholar]
- Trissl, H.-W.; Gao, Y.; Wulf, K. Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys. J. 1993, 64, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Kautsky, H.; Hirsch, A. Neue Versuche zur Kohlenstofassimilation (New experiments on carbon assimilation). Naturwissenschaften 1931, 19, 964. [Google Scholar] [CrossRef]
- Goltsev, V.N.; Kalaji, H.M.; Paunov, M.; Baba, W.; Horaczek, T.; Mojski, J.; Kociel, H.; Allakhverdiev, S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Fizologiya Rastenii 2016, 63, 881–907. [Google Scholar] [CrossRef]
- Poudyal, D.; Rosenqvist, E.; Ottosen, C.O. Phenotyping from lab to field—Tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field. Funct. Plant Biol. 2019, 46, 44–55. [Google Scholar] [CrossRef]
- Weber, J.F.; Kunz, C.; Peteinatos, G.G.; Santel, H.-J.; Gerhards, R. Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technol. 2017, 31, 523–535. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijeardane, N.K.; Thapa, S. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef]
- Nabi, R.B.S.; Lee, M.H.; Kim, S.; Kim, J.I.; Kim, M.Y.; Cho, K.S.; Oh, E. Physiological and biochemical responses of diverse peanut genotypes under drought stress and recovery at the seedling stage. Plant Breed. Biotechnol. 2022, 10, 15–30. [Google Scholar] [CrossRef]
- Chapu, I.; Okello, D.K.; Okello, R.C.O.; Odong, T.L.; Sarkar, S.; Balota, M. Exploration of alternative approaches to phenotyping of late leaf spot and groundnut rosette virus disease for groundnut breeding. Front. Plant Sci. 2022, 13, 912332. [Google Scholar] [CrossRef]
- Oteng-Frimpong, R.; Karikari, B.; Sie, E.K.; Kassim, Y.B.; Puozaa, D.K.; Rasheed, M.A.; Fonceka, D.; Okello, D.K.; Balota, M.; Burow, M.; et al. Multi-locus genome-wide association studies reveal genomic regions and putative candidate genes associated with leaf spot diseases in African groundnut (Arachis hypogaea L.) germplasm. Front. Plant Sci. 2023, 13, 1076744. [Google Scholar] [CrossRef]
- Sie, E.K.; Oteng-Frimpong, R.; Kassim, Y.B.; Puozaa, D.K.; Adjebeng-Danquah, J.; Masawudu, A.R.; Ofori, K.; Danquah, A.; Cazenave, A.B.; Hoisington, D.; et al. GB-image method enables indirect selection for leaf spot resistance and yield estimation in a groundnut breeding program in Western Africa. Front. Plant Sci. 2022, 13, 957061. [Google Scholar] [CrossRef] [PubMed]
Source | RCC | SLA | Quantum Yield (Light) | Quantum Yield (Dark) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | F Ratio | p-Value | DF | F Ratio | p-Value | DF | F Ratio | p-Value | DF | F Ratio | p-Value | |
Water Regime (WR) | 1 | 37.9 | <0.0001 | 1 | 2.7 | 0.104 | 1 | 22.4 | <0.0001 | 1 | 2.7 | 0.099 |
Block | 2 | 5.9 | 0.003 | 2 | 12.5 | <0.0001 | 2 | 0.5 | 0.621 | 2 | 1.3 | 0.264 |
Genotype (G) | 27 | 7.8 | <0.0001 | 27 | 2.1 | 0.003 | 27 | 1.3 | 0.149 | 27 | 1.7 | 0.025 |
WR × G | 27 | 2.1 | 0.003 | 27 | 1.7 | 0.018 | 27 | 1.0 | 0.414 | 27 | 0.7 | 0.871 |
Error | 194 | 185 | 278 | 278 | ||||||||
CTD | Wilting | Photosynthesis | Transpiration | |||||||||
DF | F ratio | p-Value | DF | F ratio | p-Value | DF | F ratio | p-Value | DF | F ratio | p-Value | |
Year | 1 | 16.4 | <0.0001 | 1 | 60.0 | <0.0001 | 1 | 80.1 | <0.0001 | 1 | 353.7 | <0.0001 |
Water Regime (WR) | 1 | 264.5 | <0.0001 | 1 | 632.7 | <0.0001 | 1 | 176.3 | <0.0001 | 1 | 525.5 | <0.0001 |
Block | 2 | 0.9 | 0.426 | 2 | 23.8 | <0.0001 | 2 | 0.4 | 0.687 | 2 | 2.7 | 0.069 |
Genotype (G) | 27 | 0.6 | 0.950 | 27 | 2.5 | <0.0001 | 27 | 0.8 | 0.800 | 27 | 0.9 | 0.681 |
Year × G | 27 | 0.7 | 0.833 | 27 | 1.0 | 0.497 | 27 | 0.5 | 0.986 | 27 | 0.3 | 0.999 |
WR × G | 27 | 0.7 | 0.860 | 27 | 1.1 | 0.279 | 27 | 0.2 | 1.000 | 27 | 0.2 | 1.000 |
Year × WR × G | 27 | 0.6 | 0.949 | 27 | 1.5 | 0.038 | 27 | 0.2 | 1.000 | 27 | 0.3 | 1.000 |
Error | 979 | 978 | 754 | 754 | ||||||||
Stomatal Conductance | Pod Yield | Shelling (%) | 100-Seed Wt. | |||||||||
DF | F ratio | p-Value | DF | F ratio | p-Value | DF | F ratio | p-Value | DF | F ratio | p-Value | |
Year | 1 | 44.2 | <0.0001 | 1 | 239.0 | <0.0001 | 1 | 4.1 | 0.045 | 1 | 1.1 | 0.298 |
Water Regime (WR) | 1 | 186.5 | <0.0001 | 1 | 418.6 | <0.0001 | 1 | 67.6 | <0.0001 | 1 | 22.7 | <0.0001 |
Block | 2 | 1.1 | 0.349 | 2 | 0.8 | 0.455 | 2 | 4.6 | 0.011 | 2 | 0.2 | 0.796 |
Genotype (G) | 27 | 0.7 | 0.839 | 27 | 3.8 | <0.0001 | 27 | 6.2 | <0.0001 | 27 | 10.5 | <0.0001 |
Year × G | 27 | 0.4 | 0.996 | 27 | 1.4 | 0.090 | 27 | 1.6 | 0.046 | 27 | 11.2 | <0.0001 |
WR × G | 27 | 0.4 | 0.997 | 27 | 0.8 | 0.749 | 27 | 1.9 | 0.006 | 27 | 1.3 | 0.191 |
Year × WR × G | 27 | 0.5 | 0.991 | 27 | 1.0 | 0.515 | 27 | 1.2 | 0.253 | 27 | 1.1 | 0.335 |
Error | 726 | 223 | 216 | 216 |
Genotype | CTD (°C) | Wilting (0–5) | RCC | SLA (cm2 g−1) | PS II Quantum Yield (2019) | A (µmol m−2 s−1) | gsw (mol m−2 s−1) | E (mmol m−2 s−1) | Pod Yield (kg ha−1) | Shelling (%) | 100-Seed Weight (g) | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2018 | Light | Dark | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |||||||||||||||||||||
Wynne | −3.2 | a | −3.4 | a | 0 | D | 0.7 | a | 41.3 | a | 28.8 | g | 0.68 | a | 0.73 | a | 21.4 | a, b | 29.9 | b–g | 0.59 | a | 0.93 | a | 8.3 | a, b | 15.4 | a | 6276 | a, b | 6122 | a | 66.8 | a | 66.7 | e–h | 53.0 | b–f | 113.8 | a |
Walton | −1.8 | a | −3.3 | a | 0 | D | 0.6 | a | 42.7 | a | 30.0 | g | 0.67 | a | 0.76 | a | 22.9 | a | 30.7 | b–g | 0.48 | a–e | 0.99 | a | 8.4 | a, b | 15.8 | a | 6915 | a | 6549 | a | 70.0 | a | 70.8 | b–h | 56.8 | a–f | 101.9 | a, b |
TVOL14 | −0.1 | a | −3.5 | a | 0.2 | D | 0.5 | a | 30.8 | g | 42.3 | a–f | 0.68 | a | 0.70 | a | 14.7 | g–j | 31.7 | a–d | 0.32 | d–h | 0.82 | a | 5.9 | g–k | 15.5 | a | 2425 | d–g | 5890 | a | 61.4 | a | 71.2 | b–g | 54.2 | b–f | 49.2 | g–k |
TS90 | −2.5 | a | −3.6 | a | 0 | D | 0.6 | a | 38.7 | a–f | 37.6 | a–g | 0.70 | a | 0.72 | a | 16.5 | e–h | 32.3 | a–c | 0.32 | c–h | 0.94 | a | 6.0 | g–k | 15.4 | a | 2702 | d–g | 4805 | a | 64.7 | a | 69.5 | c–h | 43.3 | e, f | 40.9 | k–m |
TROL11 | −3.6 | a | −3.2 | a | 0.3 | cd | 0.4 | a | 41.6 | a | 33.9 | d–g | 0.69 | a | 0.69 | a | 20.1 | a–e | 31.9 | a–d | 0.37 | b–h | 0.87 | a | 7.4 | a–f | 15.6 | a | 3260 | c–f | 4727 | a | 72.9 | a | 76.5 | a, b | 69.8 | a–c | 53.9 | g–i |
NMVALC | −1.4 | a | −2.5 | a | 2.3 | a | 0.5 | a | 34.7 | e–g | 49.3 | a | 0.66 | a | 0.65 | a | 24.6 | l | 32.8 | a, b | 0.13 | i | 1.06 | a | 3.4 | l | 16.5 | a | 1628 | g | 6975 | a | 61.1 | a | 67.9 | d–h | 72.7 | a, b | 44.9 | i–m |
PI 323268 | −2.2 | a | −3.7 | a | 0.3 | d | 0.3 | a | 41.0 | a–c | 34.4 | d–g | 0.68 | a | 0.70 | a | 21.3 | a–c | 33.2 | a, b | 0.49 | a–d | 1.01 | a | 8.0 | a–c | 16.7 | a | 3766 | c–e | 5464 | a | 61.0 | a | 66.9 | e–h | 66.0 | a–d | 71.5 | d, e |
PI 476636 | −2.4 | a | −3.9 | a | 0 | d | 0.5 | a | 42.4 | a | 44.8 | a–e | 0.69 | a | 0.73 | a | 16.6 | e–h | 31.7 | a–d | 0.31 | e–h | 0.89 | a | 6.1 | f–j | 16.3 | a | 3476 | c–f | 5386 | a | 66.7 | a | 71.2 | b–g | 51.7 | b–f | 55.2 | g, h |
PI 478819 | −2.2 | a | −3.3 | a | 0 | d | 0.3 | a | 38.1 | a–f | 37.7 | a–g | 0.70 | a | 0.70 | a | 17.5 | c–h | 32.0 | a–d | 0.37 | b–h | 0.86 | a | 6.8 | c–h | 15.9 | a | 2823 | d–g | 6006 | a | . | 80.6 | a | 49.8 | c–f | 67.3 | e, f | |
PI 403813 | −2.2 | a | −2.6 | a | 0.8 | b, c | 0.6 | a | 38.5 | a–f | 46.6 | a–c | 0.67 | a | 0.68 | a | 16.3 | e–h | 27.7 | f, g | 0.41 | a–h | 0.75 | a | 6.8 | c–i | 13.4 | a | 2327 | e–g | 5076 | a | 59.9 | a | 70.0 | b–h | 63.5 | a–d | 40.0 | l–n |
PI 157542 | −1.8 | a | −2.7 | a | 0 | d | 0.6 | a | 37.9 | a–f | 34.4 | d–g | 0.68 | a | 0.68 | a | 20.6 | a–d | 32.2 | a–d | 0.57 | a | 0.99 | a | 8.7 | a | 16.1 | a | 2425 | d–g | 4960 | a | 67.8 | a | 71.9 | b–f | 81.0 | a | 42.9 | j–m |
PI 259836 | −2.6 | a | −2.6 | a | 0 | d | 0.6 | a | 33.3 | f, g | 43.2 | a–e | 0.69 | a | 0.70 | a | 18.5 | b–g | 31.6 | a–d | 0.40 | a–h | 0.94 | a | 7.7 | a–d | 15.8 | a | 2354 | e–g | 6122 | a | 64.8 | a | 72.2 | b–e | 42.8 | f | 44.8 | i–m |
PI 296558 | −3.1 | a | −3.8 | a | 0 | d | 0.6 | a | 40.9 | a–d | 31.1 | f, g | 0.68 | a | 0.74 | a | 16.1 | f–i | 30.8 | b–f | 0.35 | c–h | 1.03 | a | 6.5 | d–i | 15.2 | a | 3162 | d–g | 4650 | a | 68.9 | a | 70.1 | b–h | 61.4 | a–e | 81.9 | cd |
PI 319768 | −2.7 | a | −2.9 | a | 0.2 | d | 0.6 | a | 40.1 | a–c | 35.4 | c–g | 0.69 | a | 0.69 | a | 19.7 | a–f | 32.4 | a–c | 0.38 | b–h | 0.98 | a | 7.4 | a–f | 15.7 | a | 2977 | d–g | 4650 | a | 60.4 | a | 68.6 | d–h | 47.0 | d–f | 39.5 | l–n |
PI 268996 | −2.0 | a | −3.7 | a | 0 | d | 0.3 | a | 41.5 | a | 32.9 | e–g | 0.68 | a | 0.71 | a | 21.9 | a, b | 34.4 | A | 0.50 | a–c | 1.01 | a | 8.6 | a, b | 16.7 | a | 2932 | d–g | 5541 | a | 65.4 | a | 75.7 | a–c | 53.7 | b–f | 51.5 | g–j |
PI 162655 | −2.7 | a | −2.6 | a | 1.1 | b | 0.6 | a | 35.2 | b–g | 43.9 | a–e | 0.70 | a | 0.63 | a | 14.8 | g–j | 30.3 | b–g | 0.42 | a–h | 0.98 | a | 6.2 | e–j | 14.3 | a | 2867 | d–g | 4417 | a | 77.9 | a | 71.1 | b–g | 58.9 | a–f | 45.6 | i–l |
PI 298854 | −2.4 | a | −3.4 | a | 0 | d | 0.5 | a | 41.3 | a | 37.1 | b–g | 0.69 | a | 0.71 | a | 17.4 | d–h | 32.1 | a–d | 0.41 | a–h | 1.08 | a | 7.6 | a–e | 15.3 | a | 2456 | d–g | 6549 | a | 66.5 | a | 67.6 | d–h | 51.1 | b–f | 84.9 | b–d |
PI 343398 | −2.4 | a | −3.5 | a | 0 | d | 0.5 | a | 38.5 | a–f | 43.5 | a–e | 0.67 | a | 0.70 | a | 15.5 | g–i | 32.1 | a–d | 0.29 | f–h | 1.21 | a | 6.2 | f–j | 16.9 | a | 2538 | d–g | 6122 | a | 61.8 | a | 64.2 | h | 55.6 | b–f | 92.6 | b, c |
PI 290594 | −2.6 | a | −3.5 | a | 0 | d | 0.4 | a | 38.3 | a–f | 35.8 | c–g | 0.68 | a | 0.72 | a | 17.6 | c–h | 33.1 | a, b | 0.46 | a–f | 0.93 | a | 7.2 | b–g | 16.0 | a | 3324 | c–f | 6045 | a | 63.5 | a | 70.7 | b–h | 59.6 | a–f | 55.3 | g, h |
PI 274193 | −2.3 | a | −3.5 | a | 0 | d | 0.8 | a | 41.2 | a, b | 37.1 | b–g | 0.68 | a | 0.71 | a | 16.5 | e–h | 31.4 | a–e | 0.45 | a–g | 0.84 | a | 7.5 | a–f | 16.4 | a | 2111 | f, g | 5735 | a | 63.9 | a | 68.9 | d–h | 48.4 | d–f | 58.7 | f, g |
PI 339960 | −2.6 | a | −1.6 | a | 2.7 | a | 0.7 | a | 34.9 | d–g | 45.3 | a–d | 0.67 | a | 0.70 | a | 10.1 | kl | 29.0 | d–g | 0.36 | c–h | 0.91 | a | 4.6 | kl | 14.1 | a | 2146 | f, g | 5619 | a | 60.9 | a | 65.2 | f–h | 54.2 | b–f | 48.7 | g–k |
PI 502120 | −2.6 | a | −2.6 | a | 0.3 | cd | 0.9 | a | 38.0 | a–f | 28.6 | g | 0.68 | a | 0.74 | a | 15.5 | g–i | 27.5 | G | 0.35 | c–h | 0.82 | a | 6.6 | d–i | 13.8 | a | 2890 | d–g | 6394 | a | 58.6 | a | 64.6 | g, h | 51.9 | b–f | 52.7 | g–i |
PI 497517 | −1.6 | a | −3.4 | a | 0.5 | cd | 0.8 | a | 34.9 | c–g | 39.3 | a–g | 0.70 | a | 0.73 | a | 11.6 | j, k | 29.2 | c–g | 0.28 | h | 0.86 | a | 5.4 | i–k | 14.6 | a | 3552 | c–f | 6820 | a | 65.2 | a | 72.0 | b–e | 59.9 | a–f | 48.4 | h–k |
PI 494018 | −3.2 | a | −2.5 | a | 0 | d | 0.6 | a | 34.4 | e–g | 42.2 | a–f | 0.68 | a | 0.66 | a | 14.7 | g–j | 28.8 | d–g | 0.35 | c–h | 0.86 | a | 6.3 | e–j | 13.7 | a | 2148 | f, g | 5502 | a | 58.7 | a | 74.2 | a–d | 46.4 | d–f | 33.3 | n |
PI 493938 | −2.4 | a | −2.8 | a | 0.5 | cd | 1.1 | a | 37.8 | a–f | 43.5 | a–e | 0.68 | a | 0.73 | a | 14.1 | h–j | 28.2 | e–g | 0.37 | c–h | 0.80 | a | 5.8 | h–k | 13.2 | a | 2588 | d–g | 6510 | a | 66.2 | a | 69.1 | c–h | 56.2 | b–f | 37.4 | m, n |
PI 493880 | −1.8 | a | −2.9 | a | 0 | d | 0.5 | a | 40.5 | a–e | 48.0 | a, b | 0.68 | a | 0.68 | a | 13.7 | h–k | 32.5 | a–c | 0.28 | h | 1.19 | a | 5.8 | h–k | 16.6 | a | 3935 | cd | 6161 | a | 66.7 | a | 69.2 | c–h | 53.8 | b–f | 42.5 | k–m |
PI 493729 | −2.6 | a | −2.6 | a | 0 | d | 0.9 | a | 34.5 | e–g | 37.7 | a–g | 0.68 | a | 0.72 | a | 12.4 | i–k | 30.7 | b–g | 0.29 | g, h | 0.82 | a | 5.0 | j, k | 15.3 | a | 2832 | d–g | 5173 | a | 67.5 | a | 69.8 | b–h | 61.5 | a–e | 41.7 | k–m |
C7616 | −3.1 | a | −2.8 | a | 0 | d | 0.4 | a | 41.4 | a | 27.8 | g | 0.68 | a | 0.76 | a | 21.1 | a–d | 31.7 | a–d | 0.55 | a, b | 1.40 | a | 8.5 | a, b | 16.2 | a | 4753 | b, c | 6200 | a | 66.5 | a | 70.1 | b–h | 55.0 | b–f | 71.1 | d, e |
Mean | −2.4 | −3.1 | 0.3 | 0.6 | 38.4 | 38.3 | 0.68 | 0.71 | 17.3 | 31.1 | 0.4 | 1.0 | 6.7 | 15.4 | 3128 | 5720 | 65.0 | 70.2 | 56.4 | 57.6 | ||||||||||||||||||||
p-Value | 0.854 | 0.38 | 0.001 | 0.853 | 0.002 | 0.003 | 0.928 | 0.073 | <0.0001 | 0.0016 | <0.0001 | 0.688 | <0.0001 | 0.489 | <0.0001 | 0.483 | 0.199 | 0.006 | <0.0001 | <0.0001 |
CTD (°C) | Wilting (0–5) | RCC | SLA (cm2 g−1) | PS II Quantum Yield (2019) | A (µmol m−2 s−1) | gs (mol m−2 s−1) | E (mmol m−2 s−1) | Pod Yield (kg ha−1) | Shelling (%) | 100-Seed Weight (g) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | 2018 | 2019 | 2018 | 2019 | 2018 | 2018 | Light | Dark | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||||||||||||||||||
Wynne | 0.4 | a | 1.0 | a | 3.0 | a | 2.2 | a–f | 42.2 | a–d | 30.2 | a | 0.66 | a | 0.70 | a | 17.4 | a–g | 15.6 | a–e | 0.25 | a–c | 0.38 | a | 5 | a–c | 6.4 | a | 2050 | b–e | 3410 | a–c | 66.1 | a–d | 60.4 | g–i | 50.7 | b–e | 96.0 | a |
Walton | −0.4 | a | 1.3 | a | 2.4 | a | 1.5 | F | 42.0 | a–e | 35.1 | a | 0.68 | a | 0.72 | a | 17.8 | a–f | 13.4 | c–e | 0.25 | a–c | 0.24 | a | 4.9 | a–d | 6.9 | a | 3462 | a | 2868 | a–g | 61.5 | c–h | 73.8 | a | 43.9 | d, e | 79.7 | b, c |
TVOL14 | −2.2 | a | 1.7 | a | 1.6 | a | 2.1 | b–f | 35.4 | e–l | 39.2 | a | 0.65 | a | 0.70 | a | 15.1 | d–j | 13.1 | d, e | 0.14 | e–h | 0.06 | a | 3.4 | e–j | 5.7 | a | 1777 | c–h | 3197 | a–d | 57.6 | f–i | 62.1 | f, g | 43.4 | d, e | 48.1 | h–j |
TS90 | −1.5 | a | 1.2 | a | 3.2 | a | 1.9 | d–f | 39.5 | a–h | 44.1 | a | 0.65 | a | 0.71 | a | 13.9 | g–l | 15.3 | a–e | 0.14 | e–h | 0.05 | a | 3.3 | f–j | 6.7 | a | 1695 | c–h | 3100 | a–e | 67.1 | a–d | 67.7 | a–f | 54.6 | a–e | 42.3 | j–n |
TROL11 | 0.6 | a | 1.9 | a | 3.6 | a | 2.9 | A | 42.1 | a–e | 36.7 | a | 0.64 | a | 0.68 | a | 14.7 | e–l | 13.5 | c–e | 0.14 | e–h | 0.11 | a | 3.4 | f–j | 5.3 | a | 1964 | b–g | 2286 | b–g | 72.9 | a | 64.8 | b–g | 49.7 | b–e | 52.1 | g, h |
NMVALC | −1.1 | a | 1.4 | a | 3.0 | a | 2.6 | a–c | 31.4 | j–l | 37.3 | a | 0.53 | a | 0.60 | a | 12.7 | h–l | 15.2 | a–e | 0.11 | f–h | 0.15 | a | 2.7 | g–j | 5.3 | a | 1065 | d–i | 2364 | a–g | 61.6 | c–h | 66.3 | b–g | 56.9 | a–e | 43.3 | i–l |
PI 323268 | 0.6 | a | 1.2 | a | 3.2 | a | 2.3 | a–f | 40.3 | a–g | 35.3 | a | 0.71 | a | 0.69 | a | 17.8 | a–f | 15.5 | a–e | 0.22 | a–e | 0.21 | a | 4.5 | a–f | 6.3 | a | 1573 | c–i | 2887 | a–g | 55.8 | g–i | 54.8 | h–j | 49.9 | b–e | 62.6 | e, f |
PI 476636 | −1.0 | a | 1.6 | a | 1.8 | a | 2.2 | a–f | 44.4 | a | 32.2 | a | 0.62 | a | 0.68 | a | 19.2 | a, b | 14.9 | a–e | 0.27 | a, b | 0.11 | a | 5.2 | a | 5.6 | a | 2259 | b, c | 3565 | a | 71.1 | a, b | 65.8 | b–g | 46.2 | b–e | 51.6 | g, h |
PI 478819 | −1.6 | a | 1.2 | a | 1.6 | a | 1.7 | Ef | 38.3 | a–i | 28.6 | a | 0.64 | a | 0.69 | a | 19.1 | a–c | 18.4 | a | 0.24 | a–d | 0.34 | a | 4.8 | a–e | 7.5 | a | 1976 | b–f | 2887 | a–g | 64.4 | b–f | 71.0 | a, b | 48.7 | b–e | 57.3 | f, g |
PI 403813 | −2.0 | a | 1.5 | a | 1.7 | a | 2.8 | a, b | 30.8 | kl | 34.7 | a | 0.59 | a | 0.64 | a | 11.5 | kl | 12.4 | e | 0.09 | h | 0.17 | a | 2.4 | i, j | 5.6 | a | 1002 | e–i | 1938 | e–g | 63.2 | c–g | 65.6 | b–g | 49.6 | b–e | 36.9 | n–p |
PI 157542 | 0.1 | a | 1.7 | a | 1.2 | a | 1.9 | c–f | 37.9 | a–j | 40.5 | a | 0.68 | a | 0.72 | a | 20.1 | a | 16.6 | a–c | 0.28 | a | 0.13 | a | 5.2 | a | 7.2 | a | 1497 | c–i | 2635 | a–g | 67.7 | a–d | 70.2 | a–c | 58.4 | a–e | 42.7 | i–m |
PI 259836 | 0.2 | a | 0.9 | a | 2.2 | a | 2.0 | c–f | 29.1 | l | 38.1 | a | 0.67 | a | 0.73 | a | 17.0 | a–g | 15.7 | a–e | 0.21 | a–e | 0.03 | a | 4.3 | a–f | 7.5 | a | 1625 | c–h | 2054 | d–g | 67.2 | a–d | 66.1 | b–g | 53.6 | b–e | 44.5 | i–l |
PI 296558 | −1.9 | a | 1.4 | a | 2.5 | a | 1.8 | d–f | 39.8 | a–g | 35.9 | a | 0.67 | a | 0.72 | a | 18.3 | a–e | 14.7 | b–e | 0.25 | a–d | 0.27 | a | 5.0 | a, b | 5.6 | a | 1309 | c–i | 2170 | c–g | 62.3 | c–h | 62.8 | e–g | 59.3 | a–d | 65.0 | d–f |
PI 319768 | −0.7 | a | 1.0 | a | 3.1 | a | 2.4 | a–e | 42.5 | a–c | 37.1 | a | 0.73 | a | 0.71 | a | 16.1 | b–h | 14.4 | b–e | 0.18 | a–e | 0.18 | a | 4.0 | a–g | 5.9 | a | 900 | g–i | 1879 | e–g | 65.9 | a–e | 65.8 | b–g | 53.0 | b–e | 35.8 | p, q |
PI 268996 | −0.2 | a | 1.1 | a | 2.3 | a | 1.9 | d–f | 41.6 | a–f | 35.0 | a | 0.69 | a | 0.70 | a | 15.7 | b–j | 14.2 | b–e | 0.17 | c–g | 0.38 | a | 3.7 | b–i | 5.4 | a | 527 | i | 2131 | d–g | 56.7 | g–i | 60.6 | g–i | 44.8 | c–e | 48.7 | hi |
PI 162655 | −0.4 | a | 1.2 | a | 2.8 | a | 2.3 | a–f | 33.8 | g–l | 40.8 | a | 0.67 | a | 0.70 | a | 15.2 | d–j | 12.6 | e | 0.15 | e–h | 0.26 | a | 3.4 | e–j | 5.6 | a | 937 | f–i | 2383 | a–g | 69.0 | a–c | 70.0 | a–d | 62.9 | a–c | 42.2 | j–n |
PI 298854 | −1.5 | a | 1.6 | a | 1.7 | a | 2.2 | a–f | 40.0 | a–g | 36.7 | a | 0.66 | a | 0.71 | a | 14.9 | e–k | 16.6 | a–c | 0.14 | e–h | 0.46 | a | 3.2 | f–j | 6.6 | a | 1545 | c–i | 1996 | d–g | 53.3 | I | 54.0 | i, j | 43.9 | c–e | 73.9 | cd |
PI 343398 | −0.8 | a | 1.3 | a | 2.4 | a | 1.6 | F | 36.4 | c–k | 33.5 | a | 0.64 | a | 0.65 | a | 15.5 | c–j | 15.5 | a–e | 0.18 | b–f | 0.43 | a | 3.8 | b–h | 6.7 | a | 867 | hi | 2073 | d–g | 57.3 | f–i | 60.3 | g–i | 50.2 | b–e | 85.2 | a, b |
PI 290594 | 0.8 | a | 1.5 | a | 3.9 | a | 2.0 | c–f | 35.6 | d–l | 35.0 | a | 0.6 | a | 0.67 | a | 13.9 | g–l | 17.3 | a, b | 0.16 | d–g | 0.09 | a | 3.6 | c–j | 6.2 | a | 1168 | d–i | 1686 | g | 63.2 | c–g | 65.0 | b–g | 53.6 | b–e | 51.7 | g, h |
PI 274193 | −0.5 | a | 1.3 | a | 3.4 | a | 2.4 | a–e | 39.2 | a–h | 37.1 | a | 0.63 | a | 0.70 | a | 12.2 | j–l | 13.7 | c–e | 0.10 | g, h | 0.27 | a | 2.8 | g–j | 5.3 | a | 734 | hi | 1783 | f, g | 58.3 | e–i | 59.9 | g–j | 46.8 | b–e | 54.4 | g, h |
PI 339960 | −1.3 | a | 1.2 | a | 2.8 | a | 2.4 | a–e | 36.1 | c–k | 37.7 | a | 0.57 | a | 0.67 | a | 11.2 | l | 16.3 | a–d | 0.08 | h | 0.16 | a | 2.3 | j | 7.1 | a | 832 | hi | 2151 | d–g | 56.6 | g–i | 61.5 | f–h | 67.7 | a, b | 44.4 | i–l |
PI 502120 | −1.1 | a | 0.6 | a | 2.3 | a | 2.5 | a–d | 36.6 | b–k | 39.2 | a | 0.65 | a | 0.74 | a | 14.5 | f–l | 14.4 | b–e | 0.16 | d–g | 0.40 | a | 3.6 | d–j | 5.8 | a | 1565 | c–i | 3023 | a–f | 55.4 | Hi | 53.4 | j | 82.1 | a | 47.8 | h–k |
PI 497517 | −1.4 | a | 1.6 | a | 2.8 | a | 2.8 | A | 32.4 | i–l | 38.8 | a | 0.65 | a | 0.69 | a | 15.8 | b–i | 12.7 | e | 0.20 | a–e | 0.37 | a | 4.2 | a–f | 5.0 | a | 1769 | c–h | 2868 | a–g | 61.1 | d–h | 66.7 | b–g | 44.2 | d, e | 40.7 | l–p |
PI 494018 | −2.7 | a | 1.2 | a | 2.5 | a | 2.4 | a–e | 31.3 | j–l | 46.5 | a | 0.67 | a | 0.70 | a | 12.4 | i–l | 16.3 | a–d | 0.09 | h | 0.24 | a | 2.6 | h–j | 6.3 | a | 1554 | c–i | 2325 | a–g | 61.6 | c–h | 69.4 | a–e | 48.0 | c–e | 31.9 | q |
PI 493938 | −2.6 | a | 0.7 | a | 2.7 | a | 2.4 | a–e | 32.7 | h–l | 37.1 | a | 0.64 | a | 0.71 | a | 14.7 | f–l | 16.3 | a–d | 0.13 | e–h | 0.32 | a | 3.2 | f–j | 6.1 | a | 1615 | c–h | 2809 | a–g | 62.0 | c–h | 66.6 | b–g | 49.4 | b–e | 36.5 | o–q |
PI 493880 | −2.1 | a | 1.6 | a | 1.9 | a | 2.0 | b–f | 35.2 | f–l | 30.8 | a | 0.60 | a | 0.70 | a | 14.0 | g–l | 17.3 | a, b | 0.17 | c–g | 0.10 | a | 3.5 | d–j | 7.0 | a | 2135 | b–d | 3449 | a, b | 64.4 | b–f | 63.5 | c–g | 42.2 | d, e | 41.8 | k–o |
PI 493729 | −1.8 | a | 1.1 | a | 2.6 | a | 2.4 | a–e | 30.4 | kl | 38.0 | a | 0.55 | a | 0.67 | a | 11.5 | kl | 13.9 | b–e | 0.10 | g, h | 0.41 | a | 2.6 | h–j | 5.1 | a | 1182 | d–i | 1918 | e–g | 60.5 | d–i | 63.1 | d–g | 41.9 | e | 37.5 | m–p |
C7616 | −1.1 | a | 1.2 | a | 2.3 | a | 1.8 | d–f | 43.3 | a, b | 34.0 | a | 0.70 | a | 0.73 | a | 18.7 | a–d | 15.0 | a–e | 0.28 | a | 0.22 | a | 5.2 | a | 5.9 | a | 2903 | a, b | 3507 | a, b | 64.9 | b–f | 61.2 | f–h | 48.8 | b–e | 66.7 | d, e |
Mean | −1.0 | 1.3 | 2.5 | 2.2 | 37.2 | 36.6 | 0.64 | 0.69 | 15.4 | 15.0 | 0.2 | 0.2 | 3.8 | 6.1 | 1553 | 2548 | 62.5 | 64.0 | 51.6 | 52.2 | ||||||||||||||||||||
p-Value | 0.473 | 1 | 0.146 | 0.009 | <0.0001 | 0.625 | 0.235 | 0.477 | <0.0001 | 0.0462 | <0.0001 | 0.068 | <0.0001 | 0.166 | 0.0003 | 0.05 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
CTD | Wilting | RCC | SLA | PSII Quantum Yield | A | gs | E | Pod Yield | Shelling (%) | 100-Seed Wt. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light | Dark | |||||||||||||||||||
2018 | 2019 | 2018 | 2019 | 2018 | 2018 | 2019 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Red | 0.80 | 0.72 | 0.90 | 0.70 | −0.47 | −0.55 | −0.66 | −0.74 | −0.60 | −0.69 | −0.80 | −0.68 | −0.78 | −0.67 | −0.64 | −0.62 | −0.38 | −0.20 | −0.25 | −0.62 |
Green | 0.53 | 0.34 | 0.39 | 0.32 | −0.39 | −0.29 | −0.42 | −0.53 | −0.42 | −0.29 | −0.53 | −0.28 | −0.50 | −0.28 | −0.46 | −0.25 | −0.32 | 0.13 | −0.15 | −0.63 |
Blue | 0.83 | 0.77 | 0.85 | 0.80 | −0.33 | −0.47 | −0.71 | −0.77 | −0.59 | −0.74 | −0.85 | −0.75 | −0.83 | −0.73 | −0.67 | −0.71 | −0.31 | −0.25 | −0.29 | −0.46 |
NDVI | −0.89 | −0.78 | −0.94 | −0.78 | 0.21 | 0.48 | 0.72 | 0.75 | 0.61 | 0.72 | 0.88 | 0.73 | 0.87 | 0.72 | 0.68 | 0.68 | 0.27 | 0.29 | 0.27 | 0.55 |
NPPR | −0.86 | −0.91 | −0.81 | −0.93 | 0.22 | −0.19 | 0.71 | 0.75 | 0.62 | 0.94 | 0.89 | 0.94 | 0.87 | 0.94 | 0.69 | 0.87 | 0.30 | 0.53 | 0.30 | 0.40 |
NGRDI | −0.83 | −0.94 | −0.83 | −0.90 | 0.32 | −0.30 | 0.69 | 0.75 | 0.66 | 0.92 | 0.90 | 0.91 | 0.89 | 0.91 | 0.69 | 0.82 | 0.37 | 0.51 | 0.29 | 0.52 |
PPR | −0.85 | −0.75 | −0.77 | −0.85 | 0.16 | −0.11 | 0.65 | 0.65 | 0.56 | 0.83 | 0.85 | 0.85 | 0.82 | 0.84 | 0.65 | 0.81 | 0.25 | 0.49 | 0.29 | 0.01 |
NCPI | −0.82 | 0.04 | −0.67 | −0.17 | 0.05 | 0.00 | 0.11 | 0.06 | 0.46 | 0.11 | 0.74 | 0.15 | 0.71 | 0.13 | 0.57 | 0.20 | 0.16 | 0.10 | 0.27 | −0.35 |
Hue | −0.86 | −0.90 | −0.80 | −0.86 | −0.03 | 0.41 | 0.69 | 0.74 | −0.58 | −0.62 | −0.78 | −0.61 | −0.76 | −0.60 | 0.68 | 0.79 | 0.40 | 0.47 | −0.27 | −0.61 |
Intensity | 0.77 | 0.66 | 0.72 | 0.65 | −0.50 | −0.44 | −0.63 | −0.72 | 0.66 | 0.88 | 0.86 | 0.87 | 0.85 | 0.87 | −0.64 | −0.56 | −0.37 | −0.12 | 0.26 | 0.52 |
Saturation | −0.78 | −0.65 | −0.89 | −0.73 | 0.07 | 0.49 | 0.52 | 0.50 | 0.53 | 0.65 | 0.82 | 0.68 | 0.80 | 0.67 | 0.63 | 0.68 | 0.22 | 0.40 | 0.29 | −0.13 |
Lightness | 0.53 | 0.46 | 0.42 | 0.44 | −0.51 | −0.32 | −0.49 | −0.59 | −0.44 | −0.41 | −0.54 | −0.40 | −0.52 | −0.40 | −0.48 | −0.36 | −0.35 | 0.05 | −0.19 | −0.63 |
a* | 0.88 | 0.94 | 0.92 | 0.94 | 0.16 | −0.45 | −0.69 | −0.69 | −0.63 | −0.94 | −0.90 | −0.94 | −0.88 | −0.93 | −0.67 | −0.87 | −0.31 | −0.61 | −0.30 | −0.30 |
b* | −0.74 | −0.42 | −0.87 | −0.49 | −0.18 | 0.43 | 0.26 | 0.19 | 0.47 | 0.44 | 0.76 | 0.48 | 0.74 | 0.47 | 0.56 | 0.49 | 0.16 | 0.46 | 0.26 | −0.59 |
u* | 0.89 | 0.95 | 0.90 | 0.93 | 0.02 | −0.44 | −0.71 | −0.73 | −0.65 | −0.93 | −0.90 | −0.93 | −0.89 | −0.93 | −0.68 | −0.86 | −0.35 | −0.56 | −0.30 | −0.46 |
v* | −0.68 | −0.33 | −0.82 | −0.39 | −0.29 | 0.38 | 0.16 | 0.07 | 0.43 | 0.36 | 0.70 | 0.39 | 0.69 | 0.38 | 0.50 | 0.40 | 0.12 | 0.47 | 0.24 | −0.63 |
GA | −0.79 | −0.80 | −0.78 | −0.81 | 0.07 | 0.44 | 0.69 | 0.72 | 0.63 | 0.74 | 0.84 | 0.74 | 0.82 | 0.73 | 0.67 | 0.73 | 0.39 | 0.36 | 0.24 | 0.43 |
GGA | −0.82 | −0.93 | −0.78 | −0.89 | 0.41 | 0.42 | 0.71 | 0.75 | 0.65 | 0.92 | 0.85 | 0.91 | 0.84 | 0.91 | 0.64 | 0.83 | 0.36 | 0.49 | 0.30 | 0.53 |
CSI | 0.81 | 0.93 | 0.76 | 0.89 | −0.43 | −0.41 | −0.71 | −0.75 | −0.64 | −0.92 | −0.83 | −0.91 | −0.82 | −0.91 | −0.62 | −0.83 | −0.36 | −0.49 | −0.29 | −0.53 |
Drought Stressed | Well-Watered | |
---|---|---|
CTD | 0.09 | 0.67 |
Wilting | 0.20 | 0.91 |
RCC | 0.67 | 0.82 |
SLA | 0.20 | 0.73 |
PSII Quantum yield (light) | 0.72 | 0.63 |
PSII Quantum yield (dark) | 0.67 | 0.49 |
Transpiration | 0.17 | 0.03 |
Photosynthesis | 0.62 | 0.06 |
Conductance | 0.63 | 0.09 |
Yield | 0.54 | 0.25 |
Shelling | 0.90 | 0.87 |
100-seed weight | 0.82 | 0.93 |
Red | 0.84 | 0.80 |
Green | 0.82 | 0.67 |
Blue | 0.70 | 0.52 |
NDVI | 0.40 | 0.43 |
NPPR | 0.51 | 0.48 |
NGRDI | 0.80 | 0.59 |
PPR | 0.27 | 0.66 |
NCPI | 0.17 | 0.66 |
Intensity | 0.83 | 0.69 |
Hue | 0.77 | 0.50 |
Saturation | 0.21 | 0.66 |
Lightness | 0.78 | 0.72 |
a* | 0.35 | 0.24 |
b* | 0.36 | 0.90 |
u* | 0.66 | 0.35 |
v* | 0.49 | 0.81 |
GA | 0.56 | 0.11 |
GGA | 0.87 | 0.52 |
CSI | 0.85 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balota, M.; Sarkar, S.; Bennett, R.S.; Burow, M.D. Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index Data. Agriculture 2024, 14, 565. https://doi.org/10.3390/agriculture14040565
Balota M, Sarkar S, Bennett RS, Burow MD. Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index Data. Agriculture. 2024; 14(4):565. https://doi.org/10.3390/agriculture14040565
Chicago/Turabian StyleBalota, Maria, Sayantan Sarkar, Rebecca S. Bennett, and Mark D. Burow. 2024. "Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index Data" Agriculture 14, no. 4: 565. https://doi.org/10.3390/agriculture14040565
APA StyleBalota, M., Sarkar, S., Bennett, R. S., & Burow, M. D. (2024). Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index Data. Agriculture, 14(4), 565. https://doi.org/10.3390/agriculture14040565